期刊文献+

猪肉中挥发性盐基氮含量光谱检测模型的修正方法 被引量:2

Correction methods of pork total volatile basic nitrogen content detection model based on hyperspectral imaging technology
收藏 分享 导出
摘要 目的研究猪肉新鲜度指标挥发性盐基氮(TVB-N)含量检测模型修正方法,以提高光谱校正模型对不同品种猪肉样品的适用性。方法建立基于偏最小二乘回归(PLSR)的杜长大猪肉TVB-N模型,采用光谱信号补正与模型更新两种方法对该模型进行修订,比较修正后杜长大模型对恩施山猪样本的预测效果。结果建立的杜长大猪肉样本模型预测决定系数 R2p为0.884,预测标准差 RMSEP 为1.792,将此模型用于预测恩施山猪TVB-N值, R2p为0.552, RMSEP为4.733。修正后的杜长大模型预测恩施山猪TVB-N值时, R2p分别提高到0.964和0.943, RMSEP分别降低为1.329和1.885。结论光谱信号补正和模型更新方法均能有效改善模型预测性能,提高模型适应性。 Objective To study correction methods for pork freshness(TVB-N) detection model of different species based on hyperspectral imaging technology and improve the generality of the calibration model.Methods Du changda model was established based on partial least squares regression using Du changda mountain boars as samples.Model updating by adding new typical samples and spectral correction based on model regression coefficient were adopted to improve the model applicability of the calibration model for Enshi mountain boars.Results The TVB-N content model,with 0.884 as the coefficient of determination in prediction sets(R2p) and 1.792 as the root mean squared error of prediction(RMSEP),was used to predict the Enshi mountain boars,and R2p and RMSEP were 0.552 and 4.733,respectively.While the R2p increased to 0.964 and 0.943 and the RMSEP decreased to 1.329 and 1.885 using calibration model.Conclusion Both methods can improve the predict performance of model effectively,and enhance the model adaptation.
作者 赵政 李小昱 刘洁 文东东 刘娇 ZHAO Zheng LI Xiao-Yu LIU Jie WEN Dong-Dong LIU Jiao
出处 《食品安全质量检测学报》 2013年第3期共7页 Journal of Food Safety and Quality
基金 公益性行业(农业)科研专项,国家自然科学基金青年基金项目(61205153).Fund:Supported by the Special Fund for Agro-Scientific Research in the Public Interest,the National Natural Science Founda-tion of China
关键词 模型修正 猪肉 挥发性盐基氮 高光谱图像技术 偏最小二乘回归 model correction methods pork total volatile basic nitrogen hyperspectral imaging technology partial least squares regression
  • 相关文献

参考文献16

  • 1褚小立,袁洪福,陆婉珍.光谱多元校正中的模型传递[J].光谱学与光谱分析,2001,21(6):881-885. 被引量:45
  • 2严衍禄;赵龙莲;韩东海.近红外光谱分析基础与应用[M]{H}北京:中国轻工业出版社,2005. 被引量:1
  • 3刘泽春,张峰,谢卫.烟草近红外光谱模型的适配性研究[J].烟草科技,2008(5):34-37. 被引量:9
  • 4姚胜,武国峰,姜亦飞,付晓东,吕红坤,苏梅,蒲俊文.相思树聚戊糖含量近红外光谱分析模型的建立及修正[J].光谱学与光谱分析,2010(5):1206-1209. 被引量:10
  • 5Schimleck LR,Kube PD,Raymond CA. Extending Near Infrared Reflectance(NIR)Pulp Yield Calibrations to New Sites and Species[J].{H}Journal of Wood Chemistry and Technology,2006,(04):299-311. 被引量:1
  • 6Kapper C,Klont RE,Verdonk J. Prediction of pork quality with near infrared spectroscopy (NIRS)1. Feasibility and ro-bustness of NIRS measurements at laboratory scale[J].{H}Meat Science,2012,(03):294-299. 被引量:1
  • 7Kapper C,Klont RE,Verdonk J. Urlings. Prediction of pork quality with near infrared spectroscopy (NIRS)2. Feasibili-ty and robustness of NIRS measurements under production plant conditions[J].{H}Meat Science,2012.300-305. 被引量:1
  • 8Prevolnik M,Candek-Potokar M,Skorjanc D. Predicting pork water-holding capacity with NIR spectroscopy in relation to dif-ferent reference methods[J].{H}Journal of Food Engineering,2010.347-352. 被引量:1
  • 9Cai JR,Chen QS,Wan M. Determination of total volatile basic nitrogen(TVB-N)content and Warner-Bratzler shear force(WBSF)in pork using Fourier transform near infrared(FT-NIR)spectroscopy[J].{H}Food Chemistry,2011.1354-1360. 被引量:1
  • 10Feng YZ,ElMasry G,Sun DW. Near-infrared hyperspectral imaging and partial least squares regression for rapid and rea-gentless determination of Enterobacteriaceae on chicken fillets[J].{H}Food Chemistry,2012,(2-3):1829-1836. 被引量:1

二级参考文献46

共引文献117

同被引文献27

引证文献2

二级引证文献6

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈
新型冠状病毒肺炎防控与诊疗专栏