期刊文献+

基于Kinect深度信息的手势分割与识别 被引量:7

Gesture Segmentation and Recognition Based on Kinect Depth Data
收藏 分享 导出
摘要 针对手势识别对环境背景要求高、分割的手势往往包含手腕及手指靠拢易造成误识别等问题,提出了一种基于深度信息的手势识别方法。采集手势深度图;接着利用手生成器获取手心信息分割手势,为了去除多余的手腕信息,增加了手掌近似正方形的约束条件;利用扫描线法获取拇指外其它四指数,并结合相邻手指宽度比例及拇指位置的特殊性实现手势的识别。实验结果表明,该方法的平均识别率达到98.4%,实时性好,且对不同光照和复杂背景具有很好的鲁棒性。 Aiming at the problems that gesture recognition required high environmental background, segmented gesture usually contained wrist data and closing fingers easily caused false recognition, a gesture recognition method based on depth data was proposed. It captured gesture depth map, and it used Hands Generator to obtain the information of palm for gesture segmentation, in order to remove redundant wrist data, the constraint of the palm which looks like a square was added. The number of all the other four fingers except thumb could be acquired with the use of the scanline method, therefore, the width ratio of the adjacent fingers and the peculiarity of the thumb position were integrated to achieve the gesture recognition. Experimental results show that the average recognition rate of the method is 98.4%, and the method has good real-time performance and robustness in the different illumination conditions and complex backgrounds.
作者 毛雁明 章立亮 Mao Yanming;Zhang Liliang;Department of Computer, Ningde Normal University;
出处 《系统仿真学报》 CAS CSCD 北大核心 2015年第4期830-835,共6页 Journal of System Simulation
基金 福建省自然科学基金(2011J01358) 福建省教育厅A类科技项目(JA13337) 宁德师范学院服务海西基金项目(2012H311)
关键词 Kinect传感器 深度信息 手势分割 手势识别 Kinect sensor depth data gesture segmentation gesture recognition
  • 相关文献

参考文献16

二级参考文献146

共引文献177

同被引文献44

  • 1李瑞峰,曹雏清,王丽.基于深度图像和表观特征的手势识别[J].华中科技大学学报:自然科学版,2011(S2):88-91. 被引量:9
  • 2WU J, KONRAD J, ISHWAR P. Dynamic time warpingfor gesture-based user identification and authentication withkinect [C] 椅2013 IEEE International Conference onAcoustics, Speech and Signal Processing ( ICASSP).Piscataway, NJ: IEEE, 2013: 2371-2375. 被引量:1
  • 3SEMPENA S, MAULIDEVI N U, ARYAN P R. Humanaction recognition using dynamic time warping [C] 椅Electrical Engineering and Informatics ( ICEEI), 2011International Conference on IEEE. Piscataway, NJ: IEEE,2011: 1-5. 被引量:1
  • 4CHEN L, WEI H, FERRYMAN J. A survey of humanmotion analysis using depth imagery [J]. PatternRecognition Letters, 2013, 34(15): 1995-2006. 被引量:1
  • 5AY B, KARAKOSE M. Motion classification approachbased on biomechanical analysis of human activities[C]椅Computational Intelligence and Computing Research( ICCIC ), 2013 IEEE International Conference on.Piscataway, NY: IEEE, 2013: 1-8. 被引量:1
  • 6LEE J H, KIM H K, NAM S W, et al. Applicationadaptation methods of gesture recognition based userinterface[C]椅The 19th Korea-Japan Joint Workshop onFrontiers of Computer Vision. Piscataway, NY: IEEE,2013: 258-261. 被引量:1
  • 7Attila L, Tamas S, User-adaptive hand gesture recognition system with interactive training[J]. Image and Vision Computing, 2005,23(12):1102-11 14. 被引量:1
  • 8Li Yi. Hand gesture recognition using Kinect[C]. Proceedings of 2012 IEEE 3rd International Conference on Software Engi- neering and Service Science, 2012: 1996-199. 被引量:1
  • 9lonescu D, Suse V, Gadea C, et al. An infrared-based depth camera for gesture-baswd control of virtual environments[C]. IEEE International Conference,2013:13-18. 被引量:1
  • 10M Hu. Visual pattern recognition by moment invariants[J]. IEEE Transaction on Information Theory,1962.8(2):179-187. 被引量:1

引证文献7

二级引证文献22

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈