期刊文献+

基于粒子群优化算法的结构模型修改 预览 被引量:15

Structural Model Updating Based on Particle Swarm Optimization
在线阅读 下载PDF
分享 导出
摘要 结构模型修改已经演化为一个多学科的研究课题,在最优化框架内,应用了国际上最近提出的粒子群优化算法,该算法具有全局搜索能力并且不需要目标函数的解析表达式.对于一实际钢结构,利用部分和全部测量得到的模态数据进行了模型修改的实验研究,并与基于灵敏度分析、神经网络和遗传算法的模型修改方法进行了对比,以修改后模型计算出的模态数据与实验测得的模态数据的相似度来衡量模型修改的准确性.结果表明,在多数情况下,所提出的模型修改方法得到了最好的修改结果,因此,应用粒子群优化算法进行结构模型修改是可行的. Structural model updating was evolved into a multidisciplinary research subject, and the problem is solved in the framework of optimization. Particle swarm optimization (PSO) algorithm is applied, which is proposed by some mechanisms in sociology, psychology and ecology and has distinguished global search capability and does not need explicit expression of objective functions. For a real steel structure, some model updating experiments are carried out by using partial and complete experimentally measured modal data, respectively. The updated results are compared with those of some methods based on sensitivity analysis, neural network, and genetic algorithm. Precision of model updating is measured by the similarity between experimentally measured modal data and predicted modal data with updated models. Comparisons indicate that the model updating method gives the best results in most cases, so updating structure model with PSO is valid.
作者 孙木楠 史志俊 Sun, Munan[1]; Shi, Zhijun[1]
出处 《振动工程学报》 EI CSCD 北大核心 2004年第3期 350-353,共4页 Journal of Vibration Engineering
关键词 结构动力学 最优化算法 结构模型修改 粒子群 Modal analysis Optimization Structural design
  • 相关文献

参考文献8

  • 1黄玉盈,朱宏平,徐斌.结构动力模型修正方法的比较研究及评估摘要在实际工程中,由结构动力模型得到的计算值[J].力学进展,2002,32(4):513-525. 被引量:45
  • 2Kennedy J,Eberhart R C. Particle swarm optimization.In: Proc. IEEE Int. Conf. Neural Networks, Perth, Australia,1995:1 942-1 948 被引量:1
  • 3Eberhart R C,Kennedy J. A new optimizer using particle swarm theory. In: Proc. Int. Symposium Micro Machine and Human Science ,Japan, 1995: 39-43 被引量:1
  • 4Srinivasan D,Wee H L,Ruey L C. Traffic incident detection using particle swarm optimization. In:Proc. Int.Swarm Intelligence Symposium, 2003: 144-151 被引量:1
  • 5Higashi N,Iba H. Particle swarm optimization with gaussian mutation. In:Proc. Int. Swarm Intelligence Symposium, 2003: 72-79 被引量:1
  • 6Venter G. Particle Swarm Optimization. AIAA-2002-1235,2002 被引量:1
  • 7Shi Y,Eberhart R C. Empirical study of particle swarm optimization. In :Proc. Congress on Evolutionary Computation,1999:1 945-1950 被引量:1
  • 8Hu X, Eberhart R. Solving constrained nonlinear optimization problems with particle swarm optimization. 6th World Multiconference on Systemics, Cybernetics and Informatics, Orlando, USA, 2002 被引量:1

二级参考文献65

  • 1向锦武,周传荣.基于建模误差位置识别的有限元模型修正方法[J].振动工程学报,1997,10(1):1-7. 被引量:15
  • 2徐宜桂,史铁林.基于神经网络的结构动力模型修改和破损诊断研究[J].振动工程学报,1997,10(1):8-12. 被引量:41
  • 3Bathe K J. Finite Element Procedures in Engineering Analysis. New Jersey: Prentice-Hall, Englewood Cliffes,1982. 1~5 被引量:1
  • 4Friswell M I, Mottershead J E. Finite Element Model Updating in Structural Dynamics. Dordrecht, Boston: Klumer Academic Publishers, 1995. 1~6 被引量:1
  • 5Mottershead J E, Friswell M I. Model updating in structural dynamics: a survey. Journal of Sound & Vibration, 1993, 167(3): 347~375 被引量:1
  • 6Zhang Q W, Chang T Y P, Chang C C. Finite element model updating for the Kap Shui Mun cable-stayed bridge. Journal of Bridge Engineering, ASCE, 2000, 6(4): 285~293 被引量:1
  • 7Oreta A W C, Tanabe T A. Element identification of member properties of framed structures. Journal of Structural Engineering, ASCE, 1994, 120(4): 1961~1976 被引量:1
  • 8Zimmerman D C, Widengren M. Correcting finite element modes using a symmetric eigenstructure assignment technique. AIAA J, 1990, 28(9): 1670~1676 被引量:1
  • 9Doebling S W, Farrar C R, Prime M B. A summary review of vibration-based damage identification methods. The Shock and Vibration Digest, 1998, 30:91~305 被引量:1
  • 10冯昭志.神经网络快速学习算法及其硬件实现研究.[博士论文].武汉:华中理工大学,1994 被引量:1

共引文献44

同被引文献130

引证文献15

二级引证文献63

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈