期刊文献+

高光谱数据特征选择与特征提取研究 预览 被引量:33

Study on Feature Selection and Extraction of Hyperspectral Data
在线阅读 下载PDF
收藏 分享 导出
摘要 高光谱遥感数据的最主要特点是:传统图像维与光谱维信息融合为一体,即“图谱合一”。针对高光谱数据波段多、数据量大、冗余度大等特点,论述了特征选择和特征提取的若干算法,分析了各自的优缺点。重点研究了导数光谱算法,并针对二值编码的不足研究了其改进算法——四值编码算法。最后用编码技术和导数光谱技术提取了地物的光谱特征参数;试验表明:四值编码算法比二值编码算法效果更佳;光谱导数阶数越高,对地物特征的表达越有效。 Because of the character of hyperspectral remote sensing data, it is necessary and urgent to develop hyperspectral data process algorithm. In this paper, some hyperspectral data process algorithms for feature selection and feature extraction was discussed, and its advantage & disadvantage was analyzed. In particular, we studied derivative spectral algorithm and put forward quad-encoding algorithm as the improved the binary encoding algorithm. Using the algorithms this paper proposed we extract spectral absorption parameter. The experiments have demonstrated that quad-encoding algorithm has the better performance than binary encoding on hyperspectral data, and for derivative spectrum it is effective to indicate validate feature for objects when its rank is higher.
作者 苏红军 杜培军 SU Hong-jun, DU Pei-jun (1. School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, China ; 2. Key Laboratory of Virtual Geographic Environment(Nanjing Normal University), Ministry of Education, Nanjing 210097, China)
出处 《遥感技术与应用》 CSCD 2006年第4期 288-293,共6页 Remote Sensing Technology and Application
基金 国家自然科学基金(40401038),地理空间信息工程国家测绘局重点室开放基金和中国矿业大学科学基金(D200403)联合资助.
关键词 高光谱 光谱特征 特征选择与特征提取 地物识别 Hyperspectral, Spectral feature, Feature selection and extraction, Objects recognition
作者简介 苏红军(1985-),男,硕士研究生,研究方向为高光谱遥感信息处理、虚拟地理环境等.
  • 相关文献

参考文献20

  • 1Salehia B,Zoej M J V.Wavelet-Based Reduction of Hyperspectral Imagery[OL].http//:www.google.com. 被引量:1
  • 2赵英时等编著..遥感应用分析原理与方法[M].北京:科学出版社,2003:478.
  • 3张良培, 张立福..高光谱遥感[M],2005.
  • 4张杰林.高光谱数据挖掘与知识发现技术研究[D].中国矿业大学(博士)学位论文,2004. 被引量:1
  • 5Benediktsson J A,Sveinsson J R,Kolbeinn Arnas.Classification and Feature Extraction of AVIRIS Data[J].IEEE Transaction on Geoscience and Remote Sensing,1995,33 (5):1194~1205. 被引量:1
  • 6Nakariyakul S,Casasent D.Hyperspectral Ratio Feature Selection:Agricultural Product Inspection Example[OL].http//:www.google.com. 被引量:1
  • 7Withagen P J,Breejen E d,Franken E M,et al.Band Selection from a Hyperspectral Data-cube for A Real-time Multispectral 3CCD Camera[M].Algorithms for Multi-,Hyper,and Ultraspectral Imagery Ⅶ,2001.16~20. 被引量:1
  • 8Jiang Li.Liner Unmixing of Hyperspectral Signals via Wavelet Feature Extraction[D].Ph D Thesis and Mississippi State University,2002. 被引量:1
  • 9Xiaokun Zhu,Yonghong Jia.Solution to Joint Entropy and Its Applications in Remote Sensing[OL].http//:www.google.com. 被引量:1
  • 10Bor-Chen Kuo,David Landgrebe.Improved Statistics Estimation and Feature Extraction for Hyperspectral Data Classification[D].Ph D Thesis and School of Electrical & Computer Engineering Technical Report TRECE 01-6,December,2001.88. 被引量:1

二级参考文献20

  • 1唐军武.海洋波谱数据分析处理系统[J].海洋技术,1996,15(4):10-17. 被引量:2
  • 2王晋年,郑兰芬.成象光谱图象光谱吸收鉴别模型与矿物填图研究[J].环境遥感,1996,11(1):20-31. 被引量:56
  • 3Arel W, Michelle N, Brett B, et al. Spectral angle automatic cluster routine(SAALT) : An unsupervised multispectral clustering algorithm[J], http:://www.goole. com. 被引量:1
  • 4Fuan T, William P. A derivative-aided hyper-spectral image analysis system for Land-Cover classification[J]. IEEE Transaction on Geoscience and Remote Sensing. 2002,10(2) : 416-425. 被引量:1
  • 5Fuan T, William P. Derivative analysis of hyperspectral data [J]. Remote Sensing of Environment.1998, 66:41-51. 被引量:1
  • 6Chang Chein-I. Spectral information divergence for hyperspectral image analysis [ J ]. http://www.google. com. 被引量:1
  • 7陈述彭 童庆禧 等.遥感信息机理[M].北京:科学出版社,1999.242-245. 被引量:2
  • 8Green Robert O, Pavri Betina E, Chrien Thomas G. On-orbit radiometric and spectral calibration characteristics of EO-1 hyperion derived with an underflight of AVIRIS and in situ measurements at Salar de Arizaro, Argentina [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(6): 1194 - 1203. 被引量:1
  • 9Resmini Ronald G. The categorization of hyperspectral information (HSI) based on the distribution of spectra in hyperspace [ A]. In:Proceedings of SPIE-The International Society for Optical Engineering [ C ], San Diego, California, USA, 2003,5093:581 - 590. 被引量:1
  • 10Zhang Jun-ping, Zhang Ye, Zou Bin, et al. Fusion classification of hyperspectral image based on adaptive subspace decomposition [ A ].In: International Conference on Image Processing [ C ], Vancouver,BC, Canada, 2000,3: 472 - 475. 被引量:1

共引文献244

同被引文献452

引证文献33

二级引证文献154

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈
新型冠状病毒肺炎防控与诊疗专栏