期刊文献+

贝叶斯网络在中医证素辨证体系中的应用 预览 被引量:36

Application of Bayesian network in syndrome differentiation system of traditional Chinese medicine
在线阅读 下载PDF
分享 导出
摘要 中医学所说的“证”是一个非线性的开放复杂系统。中医的“辨证”属于认知科学、思维科学。在揭示辨证原理与规律的基础上,构建以证素为核心的辨证新体系,是统一辨证方法,提高辨证水平的需要。采用经验建模与计算建模相结合,将贝叶斯网络用于中医辨证诊断数据中症状与证素间隶属关系、证素之间组合关系的研究,运算结果表明其与中医专家经验有很高的吻合性。贝叶斯网络是对辨证进行信息挖掘处理的一种较好方法,但仍未能全面反映中医辨证的思维能力。 The concept of syndrome in traditional Ohinese medicine (TOM) is a nonlinear, open and complicated huge system. Syndrome differentiation in TOM belongs to cognitive and noetic science. To establish a new syndrome differentiation system based on the key elements of the syndrome is necessary for TOM practitioners to promote differentiation ability and reach consensus on differentiation method. With combination of experience and computation models, the Bayesian network was used in the study of the relationship between the key elements of syndrome and the symptoms, and the relationship among different key elements, in which the computing diagnosis result was identical to the result from an experienced TOM doctor. The study showed that Bayesian network is a good method to deal with the information of symptoms and signs for syndrome differentiation, but it is also not to reflect comprehensively the thinking ability of TOM doctors in doing syndrome differentiation.
作者 朱文锋 晏峻峰 黄碧群 Wen-Feng ZHU, Jun-Feng YAN, Bi-Qun HUANG (Institute of Traditional Chinese Medicine Diagnosis, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, China)
出处 《中西医结合学报》 CAS 2006年第6期 567-571,共5页 Journal of Chinese Integrative Medicine
基金 国家重点基础研究发展计划(973计划)资助项目(No.2003CB517101)
关键词 证素 辨证体系 中医 贝叶斯网络 key pattern elements syndrome differentiating system traditional Ohinese medicine Bayesian network
作者简介 Correspondence to: Wen-Feng ZHU, MD, Professor. E-mail: zwf1189@yahoo.com. cn
  • 相关文献

参考文献7

二级参考文献19

  • 1朱文锋 ,甘慧娟 .对古今有关证素概念的梳理[J].湖南中医药导报,2004,10(11):1-3. 被引量:32
  • 2陈家旭.论中医辨证的原则,要求与方法[J].湖南中医药导报,1995,1(2):8-10. 被引量:1
  • 3侯宗德,王瑞泰.中西医诊治模式的比较及其互补性[J].山东中医学院学报,1995,19(3):158-160. 被引量:2
  • 4JENSEN F V. An introduction to Bayesian networks [M]. New York: Springer, 1996. 被引量:1
  • 5PEARL J. Probabilistic reasoning in intelligent systems [M]. San Mateo, CA: Morgan Kaufmann, 1988. 被引量:1
  • 6HECKERMAN D, MAMDANI A, WELLMAN M P.Real-world application of Bayesian network [J]. Communication of ACM, 1995, 38: 24 - 26. 被引量:1
  • 7SPIRTES P, GLYMOUR C, SCHEINES R. Algorithm for fast recovery of sparse causal graphs [J]. Social Science Computer Review, 1991, 9:62 - 72. 被引量:1
  • 8SPIRTES P, MEEK C. Learning Bayesian networks with discrete variables from data [A]. Proceedings of the First International Conference on Knowledge Discovery and Data Mining [C]. Menlo Park, CA: AAAI, 1995:294 - 299. 被引量:1
  • 9SPIRTES P, GLYMOUR C, SCHEINES R. Causation, Prediction and Search [M]. New York: Springer, 1993. 被引量:1
  • 10CHICKERING D, GEIGER D, HECKERMAN D. Learning Bayesian networks: Search methods and experimental results [A]. Preliminary Papers of the Fifth International Workshop on Artificial Intelligence and Statistics [C]. Fort Lauderdale, Florida: Society for Artificial Intelligence in Statistics, 1995:112 - 128. 被引量:1

共引文献108

同被引文献539

引证文献36

二级引证文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈