期刊文献+

用近红外漫反射光谱检测肉品新鲜度的初步研究 预览 被引量:70

The Preliminary Study for Testing Freshness of Meat by Using Near-Infrared Reflectance Spectroscopy
在线阅读 下载PDF
收藏 分享 导出
摘要 挥发性盐基氮一直以来是评定肉品新鲜程度的重要指标,通常其测定依据是半微量凯氏定氮法,这难以满足当前肉品快速非破坏性的检测要求。文章通过近红外漫反射光谱法(NIRS)建立了挥发性盐基氮(TVB-N)的预测模型,并通过聚类分析方法对光谱数据进行了分类处理。结果表明当猪肉样品中TVB-N含量超过11.6mg·(100g)^-1时,可以判定该肉品为次鲜肉,采用近红外漫反射光谱法建立预测模型,能够实现对肉品的新鲜程度非破坏性、快速检测。 The value of the volatile basic nitrogen of meat is an important index to determine the freshness of meat. It is difficult to meet the demand of fast and non-destructive measurement by means of classical semimicro-quantitative nitrogent method. A model to predict the value of the volatile basic nitrogen based on near-infrared reflectance spectroscopy was established. Cluster analysis methods were applied to deal with the data of NIRS. If the content of TVB-N is more than 11.6 mg · (100 g)^-l, the back pork may be rotten. The result shows that using NIRS could indicate the freshness of meat quickly and non-invasively.
作者 侯瑞锋 黄岚 王忠义 丁海曙 徐志龙 HOU Rui-feng, HUANG Lani , WANG Zhong-yi , DING Hai-shu, XU Zhi-long( 1. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; 2. Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China)
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2006年第12期 2193-2196,共4页 Spectroscopy and Spectral Analysis
基金 科技部“十五”攻关项目(02EFN216900720)和中国农业大学信息与电气学院创新基金项目(KY-06)资助
关键词 肉品新鲜度 挥发性盐基氮 近红外漫反射光谱 聚类分析 Freshness Total volatile basic nitrogen NIRS Cluster analysis
作者简介 侯瑞锋,1981年生,中国农业大学信息与电气工程学院硕士研究生 通讯联系人
  • 相关文献

参考文献18

二级参考文献92

  • 1高士昌,佟德永.肉在鲜腐过程中总挥发性盐基氮变化规律性的分析[J].肉品卫生,1996(11):17-19. 被引量:6
  • 2林方 丁海曙.-[J].世界医疗仪器,1998,4(4):20-20. 被引量:1
  • 3中国预防医学科学院标准处.食品卫生国家标准汇编[M].北京:中国标准出版社,1993.. 被引量:2
  • 4Swatland H J. Observations on rheological,electrical,and optical changes during rigor development in pork and beef[J]. J Anim Sci,1997,75..975-985. 被引量:1
  • 5Cannell R C,Belk K E,Tatum J D,et al. Online evaluation of a commercial video image analysis system (computer vision system) to predict beef carcass red meat yield and for augmenting the assignment of USDA yield grades[J]. J Anim Sci, 2002,80:1195-1201. 被引量:1
  • 6Shackelford S D,Wheeler T L,Koohmaraie M. Coupling of image analysis and tenderness classification to simultaneously evaluate carcass cutability,longissimus area ,subprimal cut weights ,and tenderness of beef[J]. J Anim Sci, 1998,76: 2631 - 2640. 被引量:1
  • 7Swatland H J, Uttaro B,Goldenberg A A,et al. Meat quality variation in the robotic sorting of pork loins [J]. J Anim Sci, 1998, 76:2614-2618. 被引量:1
  • 8Hill B D,Jones S D M,Robertson W M,et al. Neural network modelong of carcass measurements to predict beef tenderness[J]. Can J Anim Sci, 2000,80,311 - 318. 被引量:1
  • 9Ben-Gera I,Norris K H. Direct speetrophotometrie determination of fat and moisture in meat produets[J]. J Food Sci, 1968,33(1):64. 被引量:1
  • 10Lanza E. Determination of moisture,protein,fat and calories in raw pork and beef by near infrared spectroscopy[J]. J Food Sci, 1983,48(2):471-474. 被引量:1

共引文献335

同被引文献1003

引证文献70

二级引证文献443

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈
新型冠状病毒肺炎防控与诊疗专栏