期刊文献+

基于影响集的协作过滤推荐算法 预览 被引量:57

A Collaborative Filtering Recommendation Algorithm Based on Influence Sets
在线阅读 下载PDF
收藏 分享 导出
摘要 传统的基于用户的协作过滤推荐系统由于使用了基于内存的最近邻查询算法,因此表现出可扩展性差、缺乏稳定性的缺点.针对可扩展性的问题,提出的基于项目的协作过滤算法,仍然不能解决数据稀疏带来的推荐质量下降的问题(稳定性差).从影响集的概念中得到启发,提出一种新的基于项目的协作过滤推荐算法CFBIS(collaborative filtering based on influence sets),利用当前对象的影响集来提高该资源的评价密度,并为这种新的推荐机制定义了计算预测评分的方法.实验结果表明,该算法相对于传统的只基于最近邻产生推荐的项目协作过滤算法而言,可有效缓解由数据集稀疏带来的问题,显著提高推荐系统的推荐质量. The traditional user-based collaborative filtering (CF) algorithms often suffer from two important problems: Scalability and sparsity because of its memory-based k nearest neighbor query algorithm. Item-Based CF algorithms have been designed to deal with the scalability problems associated with user-based CF approaches without sacrificing recommendation or prediction accuracy. However, item-based CF algorithms still suffer from the data sparsity problems. This paper presents a CF recommendation algorithm, named CFBIS (collaborative filtering based on influence sets), which is based on the concept of influence set and is a hot topic in information retrieval system. Moreover, it defines a new prediction computation method for this new recommendation mechanism. Experimental results show that the algorithm can achieve better prediction accuracy than traditional item-based CF algorithms. Furthermore, the algorithm can alleviate the dataset sparsity problem.
作者 陈健 印鉴 CHEN Jian, YIN Jian(School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China;Department of Computer Science, Sun Yat-Set University, Guangzhou 510275, China)
出处 《软件学报》 EI CSCD 北大核心 2007年第7期 1685-1694,共10页 Journal of Software
基金 Supported by the National Natural Science Foundation of China under Grant Nos.60573097, 60673062 (国家自然科学基金) the Research Foundation of National Science and Technology Plan Project of China under Grant No.2004BA721A02 (国家科技计划项目) the Research Foundation of Disciplines Leading to Doctorate Degree of Chinese Universities under Grant No.20050558017 (高等学校博士学科点专项科研基金) the Natural Science Foundation of Guangdong Province of China under Grant Nos.05200302, 04300462 (广东省自然科学基金) the Research Foundation of Science and Technology Plan Project in Guangdong Province of China under Grant No.2005B10101032 (广东省科技计划项目) the Natural Science Foundation of South China University of Technology under Grant No.B07ES060250 (华南理工大学自然科学基金)
关键词 电子商务 推荐系统 协作过滤 影响集 E-commerce recommendation system collaborative filtering influence set
作者简介 Corresponding author: Phn: +86-20-33509119, Fax: +86-20-39380218, E-mail: ellachen@scut.edu.cn, http://www.scut.edu.cn陈健(1977-),女,广西柳州人,博士,讲师,主要研究领域为Web挖掘,模式识别,信息处理. 印鉴(1968-),男,博士,教授,博士生导师.CCF高级会员,主要研究领域为数据挖掘,人工智能.
  • 相关文献

参考文献18

  • 1Broadvision.http://www.broadvision.com 被引量:1
  • 2Nanopoulos A,Katsaros D,Manolopoulos Y.A data mining algorithm for generalized web prefetching.IEEE Trans.on Knowledge and Data Engineering,2003,15(5):1155-1169. 被引量:1
  • 3Wang S,Gao W,Li JT.Real time persona1ization based on classification.Chinese Journal of Computers,2002,25(8):845-852. 被引量:1
  • 4Jin X,Zhou Y,Mobasher B.A unified approach to personalization based on probabilistic latent semantic models of Web usage and content.In:Proc.of the AAAI 2004 Workshop on Semantic Web Personalization (SWP 2004).San Jose:AAAI,2004.26-34.http://maya.cs.depaul.edu/~mobasher/cgi-bin/view-pubs.pl?CID=WUM 被引量:1
  • 5Herlocker J,Konstan J,Riedl J.Explaining collaborative filtering recommendations.In:Proc.of the ACM 2000 Conf.on Computer Supported Cooperative Work.2000.241-250.http://portal.acm.org/citation.cfm?doid=358916.358995 被引量:1
  • 6Miller B,Konstan J,Terveen L,Riedl J.PocketLens:Towards a personal recommender system.ACM Trans.on Information Systems,2004,22(3):437-476. 被引量:1
  • 7Baudisch P,Brueckner L.TV scout:Guiding users from printed TV program guides to personalized TV recommendation.In:Proc.of the 2nd Workshop on Personalization in Future TV.Malaga,2002.157-166.http://www.patrickbaudisch.com/publications/ 2002-Baudisch-TV02-TVScoutGuidingUsers.pdf 被引量:1
  • 8DeRoure D,Hall W,Reich S,Hill G,Pikrakis A,Stairmand M.MEMOIR-An open framework for enhanced navigation of distributed information.Information Processing and Management Journal (Elsevier Science),2001,37(1):53-74. 被引量:1
  • 9Holmquist LE,Jacobsson M,Rost M.When media gets wise:Collaborative filtering with mobile media agents.In:Proc.of the IUI 2006,the 10th Int'l Conf.on Intelligent User Interfaces.Sydney,2006.http://portal.acm.org/ 被引量:1
  • 10Good N,Schafer JB,Konstan JA,Borchers A,Sarwar BM,Herlocker J,Riedl JT.Combining collaborative filtering with personal Agents for better recommendations.In:Proc.of the 16th National Conf.on Artificial Intelligence (AAAI'99).Menlo Park:American Association for Artificial Intelligence,1999.439-446.http://portal.acm.org/citation.cfm?id=315149.315352&coll= &dl=&CFID= 15151515&CFTOKEN=6184618 被引量:1

同被引文献678

引证文献57

二级引证文献605

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈