期刊文献+

运用时间序列模型对麻疹流行趋势的预测与分析 被引量:11

Application and analysis of ARIMA model on forecasting in the incidence rate of measles
分享 导出
摘要 目的:应用时间序列模型对江苏省麻疹疫情进行预测分析,并探讨提高预测实用性的思路。方法:以1980年~2005年江苏省麻疹发病资料建立时间序列分析模型,以2006年的发病资料作为模型预测效果的考核样本。先采用差分方法对序列资料进行平稳化,然后进行定阶并估计参数,建立ARIMA模型,最后对预测结果进行分析,并利用模型对2009年强化免疫效果进行简单评价,探讨对疫情进行预警的方法和思路。结果:江苏省麻疹的发病趋势自2005年明显上升之后保持平稳,但有小幅波动,这与实际情况吻合。结论:用时间序列模型对传染病发病情况的拟合结果满意,预测效果良好,可为麻疹的防治提供一定的科学依据。 Objectlve:To forecast the incidence rate of measles in Jiangsu province by ARIMA model and discuss the method to improve its veracity. Methods:Based on the reported data of measles of Jiangsu province from 1980 to 2005,model was fitted to check out the sample from 2006 to verify its practicability. Firstly,used the difference method to make the data sequence become placid. Secondly,parameters of model was estimated and set up a product season model by deciding the rank of it. Finally,the good- ness-of-fit was given to analyze and evaluate the model. By which to explore the method to early warning of measles. Results: After an obviously ascending in 2005, the measles incidence rate kept steady, but for some slight fluctuation, which was fit to the practical sit- uation. Conclusion:It is practical to apply the approach of ARIMA product season model to predict measles in Jiangsu Province by test, providing a scientific basis for the prevention and control of the epidemic.
作者 丁晓艳 彭志行 陶红 贾成梅 刘元宝 陆培善 胡莹 邓秀英 马福宝 DING Xiao-yan,PENG Zhi-hang,TAO Hong ,JIA Cheng-mei,LI,U Yuan-bao,LU Pei-shan,HU Ying,DENG Xiu-ying, MA Fu-bao (Jiangsu Province Center for Disease Prevention and Control,Nanjing 210009;1 Department of Epidemiology & Bias tatis tics, NJMU, Nanjing 210029, China )
出处 《南京医科大学学报:自然科学版》 CAS CSCD 北大核心 2011年第8期1200-1203,共4页 Acta Universitatis Medicinalis Nanjing
基金 [基金项目]江苏省自然科学基金重点项目(BK2010079)
关键词 时间序列分析 ARIMA模型 麻疹 预测 time series analysis ARIMA model measles forecasting
作者简介 通讯作者。E-mail:taohong222@126.com
  • 相关文献

参考文献15

二级参考文献43

共引文献287

同被引文献70

引证文献11

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈