期刊文献+

基于地理加权回归的上海市房价空间分异及其影响因子研究 被引量:83

A GWR-Based Study on Spatial Pattern and Structural Determinants of Shanghai' s Housing Price
收藏 分享 导出
摘要 利用上海市外环以内2010年12月1014个小区的平均房价数据,通过构建地理加权回归模型,并与基于全局最小二乘法(OLS)进行比较,揭示上海小区房价的空间分异和不同影响因子的影响。研究发现,每增加或减少一个单位各影响因子对房价的影响大小依次为:建成时间,到CBD距离,绿化率,到公园距离,距地铁站距离,距超市距离和距学校距离。同时,地理加权回归分解成局部参数估计优于OLS提供的全局参数估计,它可以深刻的揭示出房价和空间影响因子之间复杂的关系,而且可视化的工具可以用地图的形式更详细的呈现出城市房价的整体景观,这些都是传统OLS无法比拟的。 Based on average housing price of 1014 residential quarters within the Outer Ring of Shanghai in December 2010, this paper establishes a geographically weighted regression model, and compares with least square method based on overall situation. It reveals the spatial differentiation of Shanghai housing price and impacts of different factors. According to the study, the effects of unit change in housing price influencing factor are ranked fxom high to low in order of building completion year, CBD, greening rate, distance to parks,distance to metro stations, distance to schools, and distance to supermarkets. In the meantime, GWR model provides better results than the traditional OLS model in goodness of fit and parameter estimation when spatial dependency is present in urban housing data, which help to reveal the complicated relationship between housing price and determinants over space. Moreover, the visualization tools allow to map the effects of model coefficients across urban landscape in detail, which traditional OLS methods are not on par with.
作者 汤庆园 徐伟 艾福利 TANG Qing - yuan, XU Wei, AI Fu - li (1.The center for modern Chinese city studies ,East China Normal University,Shanghoi 200062,China;2. Department of Geography, University of Lethbridge ,Lethbridge T1K 3M4 ,Alberta, Canada;3.A cademy of Disaster Reduction and Emergency Manogement , Beijing Normal University ,Beijing 100875, China)
出处 《经济地理》 CSSCI 北大核心 2012年第2期 52-58,共7页 Economic Geography
基金 教育部人文社会科学重点研究基地重大项目(11JJDZH006) 香港研究基金会项目(747509H) 加拿大Lethbridge大学研究基金项目(Grant#13253)
关键词 房价 空间分异 地理加权回归 上海 housing price spatial pattern geographically weighted regression Shanghai
作者简介 汤庆园(1980-),男,宁夏银川人,博士研究生。主要研究方向为土地开发和房地产政策。E-mail:tqy395@yahoo.com.cn。
  • 相关文献

参考文献15

  • 1Stephen A, Samaha, Wagner A, Kamakura. Assessing the market value of real estate property with a geographically weighted stochastic frontier model [J]. Real Estate Econmics, 2008,36 (4): 717 - 751. 被引量:1
  • 2Wu F L. Housing provision under globalisation : a case study of Shanghai[J].Environment and Planning A, 2001,33 : 1 741 - 1 764. 被引量:1
  • 3Stephen malpezzi ,Gregory H Chun, Richard K Green. New place - to - place housing price indexes for US metropolitan areas,and their determinants [J]. Real Estate Economics, 1998,26 (2) : 235 - 274. 被引量:1
  • 4邓永亮.人民币升值、汇率波动与房价调控[J].经济与管理研究,2010(6):43-50. 被引量:15
  • 5Allen C, Goodman. ltedonic prices,price indices and housing markets[J]. Jouranl of Urban Economics, 1978,5:471 - 484. 被引量:1
  • 6Li Z G,Wu F L. Tenure - based residential segregation in post - reform Chinese cities: a case study of Shanghai[J]. Transactions of the Institute of British Geographers, 2008,7 : 404 - 419. 被引量:1
  • 7Wu F L.Sociospatial differentiation in urban China:evidence from Shanghai's real estate markets [J]. Environment and Planning A, 2002,34:1 591 - 1 615. 被引量:1
  • 8丰雷,苗田,蒋妍.中国土地供应管制对住宅价格波动的影响[J].经济理论与经济管理,2011(2):33-40. 被引量:19
  • 9Tu J, Xia Z G. Examining spatially varying relationships between land use and water quality using geographically weighted regression I: Model design and evaluation[J]. Science of the Total Environment. 2008,407 : 358 - 378. 被引量:1
  • 10苏方林.省域R&D知识溢出的GWR实证分析[J].数量经济技术经济研究,2007,24(2):145-153. 被引量:32

二级参考文献103

共引文献187

同被引文献1296

引证文献83

二级引证文献424

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈
新型冠状病毒肺炎防控与诊疗专栏