期刊文献+

基于一种新的鲁棒目标函数的化工过程数据校正 预览 被引量:2

New Robust Objective Function-based Data Reconciliation in Chemical Process
在线阅读 下载PDF
收藏 分享 导出
摘要 给出了一种基于新鲁棒目标函数的数据校正方法,分析了目标函数的性质及其影响函数,表明了该方法对显著误差具有较强的鲁棒性。对一个线性和非线性化工过程进行了仿真研究,并与常用的Huber鲁棒估计法和Fair鲁棒估计法进行了对比分析。 A new robust objective function-based data reconciliation method was proposed. The objective function properties and its influence function were analyzed to show a stronger robust of the proposed method; a linear and a nonlinear chemical process were simulated and compared with Huber method and Fair method, respectively
作者 周凌柯 李九龙 薄煜明 ZHOU Ling-ke, LI Jiu-long, BO Yu-ming ( School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China)
出处 《化工自动化及仪表》 CAS 2012年第3期 301-304,共4页 Control and Instruments In Chemical Industry
基金 中国博士后科学基金(20110491430) 江苏省博士后科研资助计划(1101086C) 南京理工大学自主科研专项计划资助项目(2010ZYTS053)
关键词 鲁棒性 过失误差 数据校正 robustness, gross error, data reconciliation
  • 相关文献

参考文献7

  • 1Moustapha A D, Maquin D, Ragot J. Data Reconcilia- tion: A Robust Approach Using a Contaminated Distri- bution [ J]. Control Engineering Practice, 2008, 16 (2) : 159 - 170. 被引量:1
  • 2Ozyurt D B, Pike R W. Theory and Practice of Simul- taneous Data Reconciliation and Gross Error Detection for Chemical Processes [ J ]. Computers & Chemical Engineering,2004,28 ( 3 ) : 381 - 402. 被引量:1
  • 3Johnston L P M, Kramer M A. Maximum Likelihood Data Rectification : Steady-state Systems [ J]. AIChE, 1995, 41(11) : 2415 -2426. 被引量:1
  • 4高倩..鲁棒数据校正理论与应用研究 [D].上海交通大学,2007:
  • 5杜文靖,徐文艳,王豪.复杂大系统的数据校正[J].化工自动化及仪表,2011(3):257-260. 被引量:3
  • 6聂秋平,吴敏,曹卫华,熊永华.一种基于消耗预测的钢铁企业煤气平衡与数据校正方法[J].化工自动化及仪表,2010(2):14-18. 被引量:5
  • 7Narasimhan S, Mah R S H. Generalized Likelihood Ratio Method for Gross Error Identification [ J ]. AIChE,1987,33(9) : 1514 - 1521. 被引量:1

二级参考文献17

共引文献6

同被引文献23

  • 1Julier S, Uhlmann J. Unscented filtering and nonlinear esti- mation[J]. Proceeding of the IEEE,2004,92(3):401-422. 被引量:1
  • 2Zhen Luo, Fang Huajing. Modified state prediction algorithm based on UKF[J]. Journal of Systems Engineering and Elec- tronics. 2013,24(1) : 135-140. 被引量:1
  • 3Jafar Zarei, Ehsan Shokri, Nonlinear and constrained state esti- mation based on the eubature Kalman filter[J]. Industrial & En- gineering Chemistry Research, 2014,53(10) : 3938-3949. 被引量:1
  • 4Karasalo M, Hu X M. An optimization approach to adaptive Kalman filtering[J]. Automatica,2011, 47(8) : 1785-1793. 被引量:1
  • 5Han Xujian, Li Xin. An evaluation of the nonlinear/non Gaussian filters for the sequential data assimilation[J]. Re mote Sensing of Environment, 2008, 112(4): 1434-1449. 被引量:1
  • 6Rohman F S, Sata S A, Aziz N. Effect of noises on the per- formance of nonlinear state estimator for semi batch autocata- lytie esterification reactor[C]//Preprints of the 8th IFAC Symposium on Advanced Control of Chemical Processes, The International Federation of Automatic Control: Furama Riv- erfront, Singapore: [s. n. ], 2012:525-530. 被引量:1
  • 7Wu Yuanxin, Hu Dewen. Unscented Kalman filtering for ad- ditive noise case:Augmented versus nonaugmented[J]. IEEE Signal Processing letters, 2005,12 ( 5): 357-360. 被引量:1
  • 8Liu Ye, Yu Anxi. Unscented Kalman filtering in the additive noise case[J]. Technological Sciences,2010,54(4):929-941. 被引量:1
  • 9Sun Fuming, Li Guanglin, Wang Jingli. Unscented Kalman filter using augmented state in the presence of additive noise [J]. Automation and Systems Engineering, 2009,51 (7) : 379- 382. 被引量:1
  • 10Shi Yong, Han Chongzhao, Liang Yongqi. Adaptive UKF for target tracking with unknown process noise statistics[C]// 12th International Conference on Information Fusion. Seat- tle, WA: IEEE, 2009:1815-1820. 被引量:1

引证文献2

投稿分析
职称考试

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈