期刊文献+

农畜产品品质安全高光谱无损检测技术进展和趋势 预览 被引量:38

Advancement and Trend of Hyperspectral Imaging Technique for Nondestructive Detection of Agro-product Quality and Safety
在线阅读 下载PDF
收藏 分享 导出
摘要 高光谱成像技术作为光学无损检测的一种新技术在农畜产品品质安全检测中被广泛关注和应用。综述了高光谱无损检测技术的研发现状。在果蔬品质安全检测上,高光谱成像技术可用于组成分分析、食用指标测定、质量分级评定等内部品质检测和外部形态特征识别、表面缺陷及污染物检测、冻伤检验等外部品质判定,以及农药残留、致病菌污染等安全评定。在生鲜肉检测应用方面,包括营养品质的组成成分分析、食用品质如嫩度、大理石花纹、新鲜度等指标评价以及生鲜肉在微生物污染等安全品质的评定。分析了高光谱无损检测技术的现状及问题,并针对目前农畜产品无损检测的发展趋势进行前景展望。 As one of the most important optical nondestructive detection technologies, hyperspectral imaging technology was widely used for assessing for agro-product quality and safety. At first, the advancement on hyperspectral imaging technology of agricultural and livestock products quality and safety was reviewed. The research and application of this technology in fruits and vegetables are wide, including internal quality detection, such as nutritional component analysis, eating quality evaluation and real-time online quality classification; external quality detection that consists characteristics identification, surface defect and chilling injury inspection; and detection of pesticides residue. In respect of fresh meet quality and safety detection, the hyperspectral imaging technology was investigated to develop application technologies and inspection equipments, including real-time analysis of nutritional components, online evaluation of meat eating quality parameters such as tenderness, marbling and freshness, and rapid evaluation of meat safety attributes such as microbial contamination and bacteria total viable count. Finally, the status and issues of hyperspectral technology were analyzed. Its development trend prospects was presented in the nondestructive detection of agricultural and livestock products.
作者 彭彦昆 张雷蕾 Peng Yankun Zhang Leilei (College of Engineering, China Agricultural University, Beijing 100083, China)
出处 《农业机械学报》 EI CAS CSCD 北大核心 2013年第4期137-145,共9页 Transactions of the Chinese Society of Agricultural Machinery
基金 “十二五”国家科技支撑计划资助项目(2012BAH04800)和公益性行业(农业)科研专项经费资助项目(201003008)
关键词 农畜产品 品质安全 高光谱成像技术 无损检测 Agro-products Quality and safety Hyperspectral imaging technology Nondestructivedetection
作者简介 彭彦昆,教授,博士生导师,主要从事农畜产品品质安全无损检测技术与装备研究,E-mail:ypeng@cau.edu.cn
  • 相关文献

参考文献65

  • 1Kumar Patel K, Kar A, Jha S N, et al. Machine vision system: a tool for quality inspection of food and agricultural products[ J]. Journal of Food Science and Technology, 2012, 49(2) : 123 -141. 被引量:1
  • 2Wang W B, Paliwal J. Near-infrared spectroscopy and imaging in food quality and safety[ J]. Sensing and Instrumentation for Food Quality and Safety, 2007, 4( 1 ) : 193 - 207. 被引量:1
  • 3Kim M S, Chao K, Chan D E, et al. Line-scan hyperspectral imaging platform for agro-food safety and quality evaluation: system enhancement and characterization [ J ]. Transactions of the ASABE, 2011, 54 (2) : 703 - 711. 被引量:1
  • 4Kim M S, Chen Y R, Mehl P M. Hyperspectral reflectance and fluorescence imaging system for food quality and safety [ J]. Transactions of the ASAE, 2001, 44(3) : 721 -729. 被引量:1
  • 5Lorente D, Aleixos N, Gomez-Sanchis J, et al. Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment[J]. Food and Bioprocess Technology, 2012, 5(4) : 1 121 - 1 142. 被引量:1
  • 6Martinsen P, Schaare P. Measuring soluble solids distribution in kiwifruit using near-infrared imaging spectroscopy[ J]. Postharvest Biology and Technology, 1998, 14(3) : 271 -281. 被引量:1
  • 7Peirs A, Scheerlinck N, Baerdemaeker J D, et al. Starch index determination of apple fruit by means of a hyperspectral near infrared reflectance imaging system[ J]. Journal of Near Infrared Spectroscopy, 2003, 11 (5) : 379 - 389. 被引量:1
  • 8洪添胜,乔军,Ning Wang,Michael O. Ngadi,赵祚喜,李震.基于高光谱图像技术的雪花梨品质无损检测[J].农业工程学报,2007,23(2):151-155. 被引量:102
  • 9Menesatti P, Zanella A, D' Andrea S, et al. Supervised multivariate analysis of hyper-spectral NIR images to evaluate the starch index of apples[J]. Food and Bioprocess Technology, 2009, 2(3) : 308 -314. 被引量:1
  • 10邹小波,陈正伟,石吉勇,黄晓玮,张德涛.基于近红外高光谱图像的黄瓜叶片色素含量快速检测[J].农业机械学报,2012,43(5):152-156. 被引量:22

二级参考文献329

共引文献427

同被引文献556

引证文献38

二级引证文献126

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈