期刊文献+

对区间二型模糊集的EKM降型法的改进 被引量:5

Improvement of enhanced Karnik-Mendel algorithm for interval type-2 fuzzy sets
分享 导出
摘要 摘要:二型模糊集的质心计算称为降型,目前的降型方法大多计算成本较高,其中EKM(Enhanced Karnik-Mendel)法可计算区间二型模糊集的质心.然而,由于EKM算法中求取切换点的初始化方法还不完善,计算时间较长,使其在实际应用中受到一定限制.对此,提出一种新的改进EKM法,对原有方法进行了两处改进:更改切换点的初始化条件和改进查找切换点的方法.所提出的方法可实现向上和向下搜索,计算量大大减小,降型更有效.仿真结果验证了新的改进EKM法的有效性. Type reduction is the work of computing the centroid of a type-2 fuzzy set. At present, most of type reduction methods have high computational cost. The enhanced Karnik-Mendel(EKM) algorithm can compute the centroid of an interval type-2 fuzzy set efficiently. However, the initialization of the switch point in the EKM algorithm is not a good one, and the computation time is long, which makes a limit on the application in real system. In view of these problems, a novel improved EKM algorithm is developed for improving the EKM algorithm. The proposed algorithm provides two improvements on the EKM algorithm. Firstly, the initialization conditions of switch points are changed. Then, the method of searching for switch points is improved, in which can search upward and downward. The number of computations involved is greatly reduced and type reduction can be done much more efficiently. The simulation results show the effectiveness of the proposed method.
作者 王建辉 纪雯 方晓柯 顾树生 WANG Jian-hui, JI Wen, FANG Xiao-ke, GU Shu-sheng (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China. Correspondent: JIWen, E-mail: jw161@163.com)
出处 《控制与决策》 EI CSCD 北大核心 2013年第8期1165-1172,共8页 Control and Decision
基金 辽宁省科技计划项目(2010020176.301) 沈阳市基金项目(F10-2D5-1-57).
关键词 区间二型模糊集 降型 EKM法 新的改进EKM法 interval type-2 fuzzy sets type reduction enhanced Karnik-Mendel(EKM) novel improved EKM algorithm
作者简介 王建辉(1957-),女,教授,博士生导师,从事复杂控制系统的建模与控制、网络环境下先进控制技术及应用等研究 纪雯(1983-),女,博士生,从事人工智能的研究.
  • 相关文献

参考文献18

  • 1Molina-Lozano H. A new fast fuzzy Cocke-Younger- Kasami algorithm for DNA strings analysis[J]. Int J of Machine Learning and Cybernetics, 2011, 2(3): 209-218. 被引量:1
  • 2Wang X Z, He Y L, Dong L C, et al. Particle swarm optimization for determining fuzzy measures from data[J]. Information Science, 2011, 181(19): 4230-4252. 被引量:1
  • 3Wu J, Wang S T, Chung F L. Positive and negative fuzzy rule system, extreme learning machine and image classification[J]. Int J of Machine Learning and Cybernetics, 2011, 2(4): 261-271. 被引量:1
  • 4Zadeh L A. The concept of a linguistic variable and its application to approximate reasoning- Ⅰ[J]. Information Science, 1975, 8(3): 199-249. 被引量:1
  • 5Hagras H. A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots[J]. IEEE Trans on Fuzzy Systems, 2004, 12(4): 524-539. 被引量:1
  • 6Lin F J, Chou P H. Adaptive control of two-axis motion control system using interval type-2 fuzzy neural network[J]. IEEE Trans on Industrial Electronics, 2009, 56(1): 178-193. 被引量:1
  • 7Melin P, Mendoza O, Castillo O. An improved method for edge detection based on interval type-2 fuzzy logic[J]. Expert Systems with Applications, 2010, 37(12): 8527- 8535. 被引量:1
  • 8Choi Byung-In, Frank Chung-H0on Rhee. Interval type-2 fuzzy membership function generation methods for pattern recognition[J]. Information Science, 2009, 179(13): 2102- 2122. 被引量:1
  • 9Lucas L A, Centeno T M, Delgado M R. Land cover classification based on general type-2 fuzzy classifiers[J]. Int J of Fuzzy Systems, 2008, 10(3): 207-216. 被引量:1
  • 10Zeng J, Liu Z Q. Type-2 fuzzy Markov random fields and their application to handwritten Chinese character recognition[J]. IEEE Trans on Fuzzy Systems, 2008, 16(3): 747-760. 被引量:1

同被引文献53

  • 1Wang L X. A course in fuzzy systems and control [ M ]. Upper Saddle River, USA: Prentice Hall, 1996. 被引量:1
  • 2Castillo O, Melin P. Type- 2 fuzzy logic: theory and applications [ M ]. Berlin, Germany: Springer - Verlag, 2008. 被引量:1
  • 3Zadeh L A. The concept of a linguistic variable and its application to approximate reasoning [ J ]. Information Sciences, 1975, 8(2): 199-249. 被引量:1
  • 4Mendel J M. Uncertain rule - based fuzzy logic systems : introduction and new direction [ M ]. Upper Saddle River, USA: Prentice Hall, 2001. 被引量:1
  • 5Mendel J M, John R I B. Type -2 fuzzy sets made simple [J]. IEEE Transactions on Fuzzy Systems, 2002, 10 (2) : 117 -127. 被引量:1
  • 6Mendel J M. On a 50% savings in the computation of the centroid of a symmetrical interval type - 2 fuzzy set [ J ].Information Sciences, 2005, 172(4) : 417 -430. 被引量:1
  • 7Karnik N N, Mendel J M, Liang Q. Type -2 fuzzy logic systems [ J ]. IEEE Transactions on Fuzzy Systems, 1999, 7(6) : 643 -658. 被引量:1
  • 8John R I B, Mendel J M. The extended sup - star composition for type - 2 fuzzy sets made simple [ C ]/! Proceedings of IEEE International Conference on Fuzzy Systems. Vancouver, Canada: IEEE, 2006. 被引量:1
  • 9Karnik N N, Mendel .1 M. Type -2 fuzzy logic systems: type - reduction [ C ]//Proceedings of IEEE International Conference on Systems, Man, and Cybernetics. San Diego, USA: IEEE, 1998. 被引量:1
  • 10Ren Q, Balazinski M, Baron L. Type -2 TSK fuzzy logic system and its type - 1 counterpart [ J ]. International Journal of Computer Applications, 2011, 20(6) : 8 - 13. 被引量:1

引证文献5

二级引证文献1

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈