期刊文献+

基于二进神经网络的0/1分布系统可靠性分析 预览 被引量:2

Reliability of Systems with 0/1 Distribution Based on Binary Neural Networks
在线阅读 下载PDF
分享 导出
摘要 系统可靠性的计算依赖于各基本单元的0/1分布关系及其构成的布尔逻辑.本文利用二进神经网络可以完备实现布尔逻辑的特性,提出一种基于二进神经网络的可靠性分析方法.该方法针对每个二进神经元的输入都是0/1逻辑关系的线性组合这一特点,提出并且证明了0/1分布的线性组合的概率分布函数;建立系统功能与布尔函数间的等价关系,将系统转化为相应的二进神经网络;利用线性组合的概率分布函数,通过逐层计算该二进神经网络的0/1输出概率,解决了一般系统的可靠性计算问题. The computing of system reliability relies on the relationship of 0/1 distribution of components and their boolean logic. With the help of the characteristic that binary neural networks can complete the whole boolean function, we propose a method of reliability analysis based on binary neural networks. According to the input of every binary neuron is a 0 or 1 logic variable, we provide and prove the distribution function of the linear combination of 0/1 distribution. Then the equivalent relation between the system function and boolean function is established, and the system is converted to an equivalent binary neural network. As a result, using the distribution function, we can successfully resolve the problem of reliability analysis of general systems by computing the 0/1 output probability layer by layer.
作者 杨娟 陆阳 黄镇谨 YANG Juan LU Yang HUANG Zhen-Jin( 1. School of Computer and Information, Hefei University of Technology, Hefei 230009 2. Postdoctoral Programs at Information and Communication Engineering, Hefei University of Technology, Hefei 230009 3. Department of Computer Engineering, Guangxi University of Technology, Liuzhou 545006)
出处 《自动化学报》 EI CSCD 北大核心 2014年第7期1472-1480,共9页 Acta Automatica Sinica
基金 安徽省自然科学基金项目(1408085QF117),合肥工业大学博士专项科研资助基金(2013HGBZ0182),合肥工业大学青年教师创新项目(2013HGQ97019)资助
关键词 二进神经网络 系统可靠性 分布函数 线性组合 Binary neural networks system reliability distribution function linear combination
作者简介 杨娟合肥工业大学计算机与信息学院,讲师.2012年获合肥工业大学计算机与信息学院博士学位.主要研究方向为人工智能,神经网络.E—mail:yangjuan6985@163.com 陆阳合肥工业大学计算机与信息学院教授.主要研究方向为人工智能,计算机控制,传感器网络.本文通信作者.E-mail:luyang.hf@126.com 黄镇谨合肥工业大学计算机与信息学院,博士研究生.2005年获华南理工大学计算机学院硕士学位.主要研究方向为人工智能,计算机控制.E—mail:schzj@163.com
  • 相关文献

参考文献15

  • 1Laprie J C. Dependability: Basic Concepts and Terminology. Vienna: Springer-Verlag, 1990. 被引量:1
  • 2Mitchell C, Stavridou V. Mathematics of Dependable Systems. Oxford: Clarendon Press, 1995. 被引量:1
  • 3曹晋华,程侃著..可靠性数学引论[M].北京:高等教育出版社,2006:484.
  • 4Chaudhuri G, Hu K, Afshar N. A new approach to system reliability. IEEE Transactions on Reliability, 2001, 50(1): 75-84. 被引量:1
  • 5Lin M S. An O(k2log(n)) algorithm for computing the reliability of consecutive-k-out-of-n: F systems. IEEE Transactions on Reliability, 2004, 53(1): 3-6. 被引量:1
  • 6Amari S V, Zuo M J, Dill G. A fast and robust reliability evaluation algorithm for generalized multi-state k-out-of-n system. IEEE Transactions on Reliability, 2009, 58(1): 88-97. 被引量:1
  • 7Azaron A, Katagiri H, Sakawa M, Modarres M. Reliability function of a class of time-dependent systems with standby redundancy. European Journal of Operational Research, 2005, 164(2): 378-386. 被引量:1
  • 8杨娟,陆阳,黄镇谨,王强.二进神经网络中的汉明球突及其线性可分性[J].自动化学报,2011,37(6):737-745. 被引量:4
  • 9Chen F Y, Chen G R, He G L, Xu X B, He Q B. Universal perceptron and DNA-like learning algorithm for binary neural networks: LSBF and PBF implementations. IEEE Transactions on Neural Network, 2009, 20(10): 1645-1658. 被引量:1
  • 10Chen F Y, Chen G R, He Q B. Universal perceptron and DNA-like learning algorithm for binary neural networks: non-LSBF implementation. IEEE Transactions on Neural Network, 2009, 20(8): 1293-1301. 被引量:1

二级参考文献49

  • 1陆阳,韩江洪,张维勇.二进神经网络中笛卡尔球的研究[J].模式识别与人工智能,2004,17(3):368-373. 被引量:3
  • 2程辉.逻辑神经元网络[J].模式识别与人工智能,1993,6(4):300-306. 被引量:5
  • 3Chen F Y, Chen G R, He G L, Xu X B, He Q B. Universal perceptron and DNA-like learning algorithm for binary neural networks: LSBF and PBF implementations. IEEE Transactions on Neural Networks, 2009, 20(10): 1645-1658. 被引量:1
  • 4Chen F Y, Chen G R, He Q B, He G L, Xu X B. Univer- sal perceptron and DNA-like learning algorithm for binary neural networks: non-LSBF implementation. IEEE Trans- actions on Neural Networks, 2009, 20(8): 1293-1301. 被引量:1
  • 5Lu Y, Yang J, Wang Q, Huang Z J. The upper bound of the minimal number of hidden neurons for the parity prob- lem by binary neural networks. Science China Information Sciences, to be published. 被引量:1
  • 6Chua L O. CNN: a paradigm for complexity. Visions of Non- linear Science in the 21st Century. Singapore: World Scien- tific, 1999. 被引量:1
  • 7Chen F Y, He G L, Chen G R. Realization of boolean func- tions via CNN: mathematical theory, LSBF and template design. IEEE Transactions on Circuits and Systems I: Reg- ular Papers, 2006, 53(10): 2203-2213. 被引量:1
  • 8Lu Yang, Han Jiang-Hong, Wei Zhen. A general judging and constructing method of SP functions in binary neural networks. Acta Automatica Sinica, 2003, 29(2): 234-241. 被引量:1
  • 9Wegener I. The Complexity of Boolean Functions. New York: Wiley, 1987. 被引量:1
  • 10Crounse K R, Fung E L, Chua L O. Efficient implemen- tation of neighborhood logic for cellular automata via the cellular neural network universal machine. IEEE Transac- tions on Circuits and Systems I: Fundamental Theory and Applications, 1997, 44(4): 355-361. 被引量:1

共引文献6

同被引文献3

引证文献2

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈