期刊文献+

偶应力介质结构的最优强度拓扑优化 预览

Structural Topology Optimization of Couple-stress Continuum with Maximum Strength
在线阅读 免费下载
收藏 分享 导出
摘要 在等应变能密度分布的意义下给出了偶应力介质结构最优强度的拓扑优化设计方法.优化模型的设计变量为单元的密度,约束函数为许用材料的体积用量,目标函数通过等应变能密度准则隐式地给出.该方法的优点在于将强度约束/目标的显式应力形式进行转化,避免了应力函数优化问题中的奇异性、强非线性及约束的局部性等困难.数值算例表明,基于优化模型,偶应力介质的最优结果依赖于结构的最小局部尺寸与偶应力介质特征长度的比值.当宏观结构的尺寸远大于特征长度时,偶应力介质的结果趋于经典连续介质的相应结果. The topology optimization formulation of a couple-stress continuum structure with maximum strength is studied under the principle of uniform density of strain energy. The design variable is the element density and the constraint function is the permitted material volume in this formulation. Besides, the objective function is presented implicitly through the principle of uniform strain energy density. Compared with the traditional objective/constraint function in explicit stress expressions, this implicit objective avoids the difficulties such as singularity, the high nonlinearity and the locality of constraints. The numerical example shows that the optimal topology of couple-stress continuum based on the present optimization formulation relies on the size ratio of the local structure to the charac- teristic length. The topology of the couple-stress continuum tends to that of the classical continuum model.
作者 苏文政 SU Wen-zheng (School of Civil and Safety Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China)
出处 《科学技术与工程》 北大核心 2014年第35期157-159,共3页 Science Technology and Engineering
基金 国家自然科学基金(11002031)、辽宁省高校优秀人才支持计划(LJQ2012040)资助
关键词 偶应力 强度 拓扑优化 准则法 couple-stress strength topology optimization criterion method
作者简介 苏文政(1979-),男,副教授。研究方向:结构优化。E-mail:wzhsu@djtuedu.cn。
  • 相关文献

参考文献13

  • 1Mindlin R D. Influence of couple-stresses on stress concentrations.Experimental Mechanics, 1963 ; 3(1): 1-7. 被引量:1
  • 2Liu S, Su W. Effective couple-stress continuum model of cellular sol-ids and size effects analysis. International Journal of Solids and Struc-tures, 2009; 46(14-15) : 2787-2799. 被引量:1
  • 3Ostoja-Starzewski M, Boccara S D, Jasiuk I. Couple-stress moduliand characteristics length of a two-phase composite. Mechanics Re-search Communications, 1999; 26(4) : 387-396. 被引量:1
  • 4Bends0e M P. Optimal shape design as a material distribution prob-lem. Structural and Multidisciplinary Optimization, 1989; 1(4):193-202. 被引量:1
  • 5Bends0e M P, Kikuchi N. Generating optimal topologies in structuraldesign using a homogenization method. Computer Methods in AppliedMechanics and Engineering, 1988 ; 71(2) : 197-224. 被引量:1
  • 6Bends0e M P, Sigmund 0. Topology optimization: Theory, methodsand applications. Berlin: Springer, 2003. 被引量:1
  • 7Cheng K T, OlhoffN. Investigation concerning optimal design of solidelastic plates. International Journal of Solids and Structures, 1981 ;17(3) : 305-323. 被引量:1
  • 8Xie Y M,Steven G P. Evolutionary structural optimization. NewYork: Springer, 1997. 被引量:1
  • 9隋允康,边炳传,叶红玲.连续体结构屈曲约束的ICM方法拓扑优化[J].计算力学学报,2008,25(3):345-351. 被引量:9
  • 10Wang M Y, Wang X,Guo D. A level set method for structural to-pology optimization. Computer Methods in Applied Mechanics andEngineering, 2003 ; 192(1-2) : 227-246. 被引量:1

二级参考文献32

共引文献17

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈