期刊文献+

一种雷达高分辨距离像模板库建立方法 预览

A Method of HRRP Template Library Creating
在线阅读 免费下载
收藏 分享 导出
摘要 对于非合作目标而言,预警雷达单航路数据的数据率低,能够提供的信息有限,无法达到建立完备模板库要求。针对这一问题,提出了一种将多条航路数据融合的模板库建立方法。首先对雷达高分辨距离像(HRRP)进行预处理,然后对单航路数据分帧建模,最后给出一种改进Jensen-Shannon divergence(JSD)计算子帧统计分布的相似性,将多条航路数据的分帧结果合并获得模板库。实验结果表明,提出的方法能够建立冗余度较低且包含全角域信息的模板库,并且具有较强的在线学习能力。 For non-cooperative target,single route data of early warning radar has a low data rate,and cannot provide enough information to create a complete template library. To solve this problem,a new method is presented to create a complete template library via integrating multiple routes data. Firstly,the Radar High Range Resolution Profiles( HRRP) is preprocessed. Then every single route data is frame segmented and modeled. Finally,an improved JSD( Jensen-Shannon divergence) is used to measure the similarity of statistical distribution in order to integrate multiple routes data and get the template library. Experimental results show that the proposed method can build a low redundancy template library which contains full angular domain information,and has a strong online learning ability.
作者 王奇 管志强 饶起 籍林峰 WANG Qi, GUAN Zhi-qiang, RAO Qi, JI Lin-feng (CSIC 724 Research Institute, Nanjing 210015 ,P. R. China)
出处 《科学技术与工程》 北大核心 2015年第5期267-271,共5页 Science Technology and Engineering
关键词 雷达目标识别 高分辨距离像 模板库建立 Jensen-Shannon散度 radar target recognition High Range Resolution Profiles(HRRP) template library establishing Jensen-Shannon divergence
作者简介 第一作者简介:王奇(1990-),男,江苏扬州人,硕士研究生。研究方向:雷达目标识别。E-mail:w77361400@163.com
  • 相关文献

参考文献2

二级参考文献21

  • 1陈凤,杜兰,保铮,刘宏伟.雷达高分辨距离像自动目标识别方法的改进[J].电子与信息学报,2007,29(6):1450-1454. 被引量:11
  • 2Comaniciu D, Ramesh V, and Meer P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577. 被引量:1
  • 3Dunne P and Matuszewski B. Choice of similarity measure, likelihood function and parameters for histogram based particle filter tracking in CCTV grey scale video].I], Image and Vision Computing, 2011, 29(2/3): 178-189. 被引量:1
  • 4Gordon N, Arulampalam M S, Maskell S, ei al .. A tutorial on particle filters for online non-linear /nongaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188. 被引量:1
  • 5Nummiaro K, Koller-Meier E, and Van Gool L. An adaptive color-based particle filter[J]. Image and Vision Computing, 2003, 21(1): 99-110. 被引量:1
  • 6Elgammal A, Duraiswami R, and Davis L S. Probabilistic tracking inJoint feature-spatial spaces[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Madison, 2003: 781-788. 被引量:1
  • 7Wang H, Suter D, Schindler K, et al.. Adaptive object tracking based on an effective appearance filter[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(9): 1661-1667. 被引量:1
  • 8Birchfield STand Rangarajan S. Spatiograms versus histograms for region-based tracking[C]. Proceedings ofIEEE Conference on Computer Vision and Pattern Recognition. San Diego, 2005: 1158-1163. 被引量:1
  • 9Huang C, Li Y, Ai H, et al .. Robust head tracking with particles based on multiple cues[C]. Proceedings of ECCV Workshop on HCI, Graz, 2006: 1-11. 被引量:1
  • 10O'Connor N E, O'Conaire C, and Smeaton A. Thermo-visual feature fusion for object tracking using multiple spatiogram trackers[J]. Machine Vision and Application, 2008, 19(5/6): 483-494. 被引量:1

共引文献15

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈