期刊文献+

基于用户声誉的鲁棒协同推荐算法 预览 被引量:9

Robust Collaborative Recommendation Algorithm Based on User0s Reputation
在线阅读 下载PDF
收藏 分享 导出
摘要 随着推荐系统在电子商务界的快速发展以及取得的巨大经济收益,有目的性的托攻击是目前协同过滤系统面临的重大安全威胁,研究一种可抵御攻击的鲁棒推荐技术已成为目前推荐系统领域的重要课题。本文利用历史记录得到用户声誉,建立声誉推荐系统,并结合协同过滤推荐领域内的隐语义模型,提出基于用户声誉的隐语义模型鲁棒协同算法。本文提出的算法从人为攻击和自然噪声两个方面对系统的鲁棒性进行了改善。在真实的数据集Movielens 1M上的实验表明,与现有的鲁棒性推荐算法相比,这种算法具有形式简单、可解释性强、稳定的特点,且在精度得到一定提升的情况下大大增强了系统抵御攻击的能力。 With the rapid development of recommender systems in e-commerce industry, such systems bring huge eco-nomic profits. As a consequence, shilling attacks pose a significant threat to the security of collaborative filtering rec-ommender systems. Developing a kind of robust recommendation technology which can resist attacks has become an important issue in the field of the recommender system at present. In this paper, a reputation recommender system is built by user reputations which are obtained from the user historical records. Utilizing the latent factor model in the field of collaborative filtering recommendation, a novel robust collaborative recommendation algorithm based on user reputations is proposed. The algorithm improves the system0s robustness from two aspects of shilling attack and natural noise. Empirical results on Movielens 1M dataset demonstrate that compared with the existing robust recommendation, this algorithm is very effective. Characterized by simplicity, interpretability and stability, the algorithm has strong ability to resist the system attack along with the accuracy getting a certain improvement.
作者 张燕平 张顺 钱付兰 张以文 ZHANG Yan-Ping, ZHANG Shun, QIAN Fu-Lan, ZHANG Yi-Wen ( 1. School of Computer Science and Technology, Anhui Univer- sity, Hefei 230601 2. Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Anhui University, Hefei 230601)
出处 《自动化学报》 EI CSCD 北大核心 2015年第5期1004-1012,共9页 Acta Automatica Sinica
基金 国家自然科学基金,安徽大学青年科学基金,安徽省自然科学基金项目,教育部人文社科青年基金(14YJC860020)资助
关键词 推荐系统 协同过滤 声誉 托攻击 Recommender system collaborative filtering reputation shilling attack
  • 相关文献

参考文献26

  • 1Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 Computer Supported Cooperative Work. Chapel Hill: ACM, 1994. 175-186. 被引量:1
  • 2Hill W C, Stead L, Rosenstein M, Furnas G W. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the 1995 SIGCHI Conference on Human Factors in Computing Systems. Denver: ACM, 1995. 194-201. 被引量:1
  • 3Lam S K, Riedl J. Shilling recommender systems for fun and profit. In: Proceedings of the 13th International Conference on World Wide Web. New York, USA: ACM, 2004. 393-402. 被引量:1
  • 4O'Mahony M P, Hurley N J, Kushmerick N, Silvestre G C M. Collaborative recommendation: a robustness analysis. ACM Transactions on Internet Technology (TOIT), 2004, 4(4): 344-377. 被引量:1
  • 5Mobasher B, Burke R, Sandvig J J. Model-based collaborative filtering as a defense against profile injection attacks. In: Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference. Boston, Massachusetts, USA: AAAI, 2006. 被引量:1
  • 6Gunes I, Kaleli C, Bilge A, Polat H. Shilling attacks against recommender systems: a comprehensive survey. Artificial Intelligence Review, 2014, 42(4): 767-799. 被引量:1
  • 7Mobasher B, Burke R, Williams C, Bhaumik R. Analysis and detection of segment-focused attacks against collaborative recommendation. In: Proceedings of the 7th International Workshop on Knowledge Discovery on the Web. Chicago, IL: Springer Berlin Heidelberg, 2006. 96-118. 被引量:1
  • 8Burke R D, Mobasher B, Williams C, Bhaumik R. Classification features for attack detection in collaborative recommender systems. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, PA, USA: ACM, 2006. 542-547. 被引量:1
  • 9Mehta B, Nejdl W. Attack resistant collaborative filtering. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2008. 75-82. 被引量:1
  • 10李聪,骆志刚.用于鲁棒协同推荐的元信息增强变分贝叶斯矩阵分解模型[J].自动化学报,2011,37(9):1067-1076. 被引量:8

二级参考文献122

  • 1Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186 被引量:1
  • 2Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201 被引量:1
  • 3梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006 被引量:1
  • 4Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58 被引量:1
  • 5Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749 被引量:1
  • 6Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354 被引量:1
  • 7Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70 被引量:1
  • 8Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87 被引量:1
  • 9Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217 被引量:1
  • 10Linden G, Smith B, York J. Amazon. corn recommendations: hem-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76-80 被引量:1

共引文献377

同被引文献62

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:57
  • 2Mcpherson M,Smith-Lovin L,Cook J M.Birds of a feather:Homophily in social networks[J].Annual Review of Sociology,2001,5(4):344-349. 被引量:1
  • 3Tang J,Hu X,Gao H,et al.Exploiting local and global social context for recommendation[C]∥Proceedings of the Twenty-Third international joint conference on Artificial Intelligence.AAAI Press,2013:2712-2718. 被引量:1
  • 4Marsden P V,Friedkin N E.Network studies of social influence[J].Sociological Methods & Research,1993,22(1):127-151. 被引量:1
  • 5Zhou Y B,Lei T,Zhou T.A robust ranking algorithm to spamming[J].EPL (Europhysics Letters),2011,94(4):1034-1054. 被引量:1
  • 6Ha I,Oh K J,Hong M D,et al.Social filtering using social relationship for movie recommendation[M]∥Computational Collective Intelligence:Technologies and Applications.Springer Berlin Heidelberg,2012:395-404. 被引量:1
  • 7Ha I,Oh K J,Jo G S.Personalized advertisement system using social relationship based user modeling[J].Multimedia Tools and Applications,2013,74(20):8801-8819. 被引量:1
  • 8Yao W,He J,Huang G,et al.Modeling dual role preferences for trust-aware recommendation[C]∥Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval.ACM,2014:975-978. 被引量:1
  • 9Fazeli S,Loni B,Bellogin A,et al.Implicit vs.explicit trust in social matrix factorization[C]∥Proceedings of the 8th ACM Conference on Recommender systems.ACM,2014:317-320. 被引量:1
  • 10Ma H.An experimental study on implicit social recommendation[C]∥Proceedings of the 36th international ACM SIGIR confe-rence on Research and development in information retrieval.ACM,2013:73-82. 被引量:1

引证文献9

二级引证文献15

投稿分析
职称考试

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈