期刊文献+

面向协同过滤推荐的多粒度用户偏好挖掘研究

Research on Multi-granularity Users' Preference Mining Based on Collaborative Filtering Personalized Recommendation
收藏 分享 导出
摘要 【目的】针对协同过滤中用户偏好挖掘粒度与挖掘效率之间的关系展开研究,以期找出效率最高的挖掘粒度。【方法】结合实际应用情况将用户偏好挖掘粒度从粗到细划分为三种,并对三种粒度下相应的偏好挖掘算法进行详细设计,通过实验对比不同粒度下用户偏好挖掘的效率。【结果】实验结果表明,当用户偏好挖掘粒度从粗到细变化时,偏好挖掘效率也会逐渐降低。【局限】以用户消费及评分数据为挖掘用户偏好的数据来源,对于其他类型数据源暂未涉及。【结论】粗粒度的偏好挖掘能更好地发现用户偏好。 [Objective] Researching the relationship between users' preference mining granularity and mining efficiency in collaborative filtering, this paper aims at finding out the most efficient mining granularity. [Methods] According to the practical application, the users' preference mining granularity is divided into three kinds from coarse-grained to fine-grained, and then design the corresponding preference mining algorithm under the three kinds of granularities, finally contrast users' preference mining efficiency under different granularities through experiments. [Results] Experimental results show that the preference mining efficiency reduces as the users' preference mining granularity changes from coarse to fine. [Limitations] Data only includes users' consumption data and rating data, other types of data are not covered temporarily. [Conclusions] Coarse-grained preference mining is better for discovering users' preferences.
作者 宋梅青 Song Meiqing (School of Information Management, Wuhan University, Wuhan 430072, China)
出处 《现代图书情报技术》 CSSCI 2015年第12期28-33,共6页 New Technology of Library and Information Service
关键词 协同过滤 多粒度 偏好挖掘 个性化推荐 Collaborative filtering Multi-granularity Preference mining Personalized recommendation
作者简介 通讯作者:宋梅青,ORCID:0000—0002—1447—3883,E—mail:mqsong99@126.com。
  • 相关文献

参考文献16

二级参考文献152

  • 1吴丽花,刘鲁.个性化推荐系统用户建模技术综述[J].情报学报,2006,25(1):55-62. 被引量:95
  • 2陈冬林,聂规划,刘平峰.基于网页语义相似性的商品隐性评分算法[J].系统工程理论与实践,2006,26(11):98-102. 被引量:6
  • 3陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:57
  • 4Schafer J B, Konstan J A, Riedl J. E-commerce recommendation applications[J]. Data Mining and Knowledge Discovery, 2001, 5(1/2): 115-153. 被引量:1
  • 5Deshpande M, Karypis G. Item-based top-N recommendation algorithms[J]. ACM Transactions on Information Systems, 2004, 22(1): 143-177. 被引量:1
  • 6Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms[C]// 10th International Conference on World Wide Web, Hong Kong, 2001: 285-295. 被引量:1
  • 7Park S T, Pennock D, Madani O, et al. Naive filterbots for robust cold-start recommendations[C]// 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, 2006: 699-705. 被引量:1
  • 8Good N, Schafer J B, Konstan J A, et al. Combining collaborative filtering with personal agents for better recommendations[C]// 16th National Conference on Artificial Intelligence, Orlando, 1999: 439-446. 被引量:1
  • 9Claypool M, Gokhale A, Miranda T. Combining content-based and collaborative filters in an online newspaper[C]// ACM SIGIR Workshop on Recommender Systems, Berkeley, 1999. 被引量:1
  • 10Mobasher B, Cooley R, Srivastava J. Creating adaptive web sites through usage-based clustering of URLs[C]// The 1999 Workshop on Knowledge and Data Engineering Exchange, Chicago, 1999: 19-25. 被引量:1

共引文献235

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈
新型冠状病毒肺炎防控与诊疗专栏