期刊文献+

一种基于Haar-like和AdaBoost结合的人脸检测算法 预览 被引量:1

AN ALGORITHM OF FACE DETECTION BASED ON HAAR- LIKE AND ADABOOST
在线阅读 免费下载
收藏 分享 导出
摘要 人脸是人体的一项重要的生物特征,人脸检测在人脸识别中起着非常重要的作用,人脸位置的检测结果的准确性可以有效地提高人脸识别率;人脸定位在身份验证、人机交互、视频监控、机器学习、信息管理等领域有很高的应用价值.笔者提出一种人脸检测定位算法,对图像进行归一化和均衡化,减小检测范围,然后用Haar—like矩形特征形成弱分类器,结合AdaBoost学习算法将多个弱分类器组合成强分类器,对人脸图像进行检测定位.实验结果证明该方法可以有效地降低误检率,提高检测的准确性. The face is one of the most important biological characteristics of the human body. Face detection plays a key role in face recognition, and the accuracy of detecting results can effectively improve the correct rate of face recognition. In authentication, human - computer interaction, video monitoring, machine learning, information management and other fields, face detection has very important application. This paper propose a face detection algorithm. We apply image normalization and equalization first, which can reduce the detection range. And then we use the Haar - like rectangle feature to form multiple weak classifiers. At last, combine these weak classifiers with the AdaBoost learning algorithm form a strong classifier, which is used in the face detection of image. The experimental results show that this algorithm can effectively reduce the false detection rate, improve the accuracy of face detection.
作者 李静 侯德文 Li Jing,Hou Dewen ( School of Information Science and Engineering, Shandong Normal University, 250014, Jinan,China )
出处 《山东师范大学学报:自然科学版》 CAS 2015年第4期34-37,共4页 Journal of Shandong Normal University(Natural Science)
关键词 人脸定位 HAAR-LIKE特征 ADABOOST 弱分类器 强分类器 face detection haar - like feather AdaBoost weak classifier strong classifier
  • 相关文献

参考文献10

二级参考文献61

  • 1杜晓东,李岐强.支持向量机及其算法研究[J].信息技术与信息化,2005(3):37-40. 被引量:12
  • 2陈健,周利莉,史红刚,苏大伟.一种基于Haar小波变换的彩色图像人脸检测方法[J].微计算机信息,2005,21(10S):157-159. 被引量:15
  • 3李闯,丁晓青,吴佑寿.一种改进的AdaBoost算法——AD AdaBoost[J].计算机学报,2007,30(1):103-109. 被引量:47
  • 4[4]Moghaddam B,Pentland A.Probabilistic Visual Learning for Object Representation[C]//IEEE Trans Pattern Recognition,Brisbane,Australia,1998,1:110-113. 被引量:1
  • 5[5]Yang M H,Ahuja N,Kriegman D.Face Detection Using Mixtures of Linear Subspaces[C]//Proc Conference on Automatic Face and Gesture Recognition,Grenoble,France,2000:70-76. 被引量:1
  • 6[6]Rowley H A,Baluja S,Kanade T.Neural Network-Based Face Detection[J].IEEE Trans Pattern Anaylsis and Machine Intelligence,1998,20(1):23-28. 被引量:1
  • 7[7]Nefian A V,Hayes M H.Face Detection and Recognition Using Hidden Markov Models[C]//Proc IEEE Conference on Image Processing,Chicago,1998:141-145. 被引量:1
  • 8[8]Osuna E,Freund R,Girosi F.Training Support Vector Machines:An Application to Face Detection[C]//Proc Computer Vision and Pattern Recognition,Puerto Rico,1997.130-136. 被引量:1
  • 9[9]Satoh S,Nakamura Y,and Kanade T.Name-It:Naming and Detecting Faces in News Videos[J].IEEE Multimedia,1999,6(1):22-35. 被引量:1
  • 10[10]Kjeldsen R,Kender J.Find Skin in Color Images[C]//Proc.Second Int'l Conf.Automatic Face and Gesture Recognition,1996:312-317. 被引量:1

共引文献78

同被引文献7

引证文献1

二级引证文献2

投稿分析
职称考试

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈