期刊文献+

结合全局与双重局部信息的社交推荐 预览 被引量:2

Social Recommendation Combining Global and Dual Local Information
在线阅读 免费下载
收藏 分享 导出
摘要 随着Web2.0的飞速发展,社交推荐逐渐成为推荐领域近几年的研究热点。如何更有效地利用用户的社交关系是社交推荐的关键,目前的社交推荐算法主要引入的是用户之间的直接联系(明确关系)。将社交关系进一步细分为明确关系和隐含关系,并结合历史评分得到的用户声誉信息刻画了由用户全局信息(声誉)与局部信息(明确关系和隐含关系)所构成的推荐系统框架。与现有的社交推荐算法相比,所提出的算法更全面地分析了用户的社交关系,且具有良好的可解释性。在Douban数据集和Epinions数据集上进行了实验,并将本算法与主流的推荐算法进行了比较,结果表明本算法具有更好的推荐精度。 With the rapid growth of Web2.0,social recommendation has become one of the hot research topics in the last few years.It is the key point to improve recommender systems using social contextual information in a more efficient way.The existing social recommendation approaches mainly take advantage of user's direct connection(explicit relation).This paper detailed social relation as explicit relation and implicit relation and obtained the user's reputation by using his/her historic records.Then we proposed a recommendation framework capturing user's global social relation(reputation)and local social relation(explicit relation and implicit relation).Using two real datasets,Douban and Epinions,we conducted a experimental study to investigate the performance of the proposed model GDLRec.We compared our approach with existing representative approaches.The results show that GDLRec outperforms other methods in terms of prediction accuracy.
作者 钱付兰 李启龙 QIAN Fu-lan,LI Qi-long (1 School of Computer Science and Technology, Anhui University, Hefei 230601, China;2 Key Laboratory of Intelligent Computing & Signal Processing,Ministry of Education,Anhui University,Hefei 230601,China)
出处 《计算机科学》 CSCD 北大核心 2016年第2期57-59,94共4页 Computer Science
基金 安徽大学2014年本科生创新创业项目(201410357036),安徽大学“211工程”三期第三批杰出青年科学研究培育基金(KJQN1116)资助.
关键词 社交推荐 矩阵分解 声誉 隐含关系 Social recommendation Matrix factorization Reputation Implicit relation
  • 相关文献

参考文献15

  • 1Mcpherson M,Smith-Lovin L,Cook J M.Birds of a feather:Homophily in social networks[J].Annual Review of Sociology,2001,5(4):344-349. 被引量:1
  • 2Tang J,Hu X,Gao H,et al.Exploiting local and global social context for recommendation[C]∥Proceedings of the Twenty-Third international joint conference on Artificial Intelligence.AAAI Press,2013:2712-2718. 被引量:1
  • 3Marsden P V,Friedkin N E.Network studies of social influence[J].Sociological Methods & Research,1993,22(1):127-151. 被引量:1
  • 4张燕平,张顺,钱付兰,张以文.基于用户声誉的鲁棒协同推荐算法[J].自动化学报,2015,41(5):1004-1012. 被引量:9
  • 5Zhou Y B,Lei T,Zhou T.A robust ranking algorithm to spamming[J].EPL (Europhysics Letters),2011,94(4):1034-1054. 被引量:1
  • 6Ha I,Oh K J,Hong M D,et al.Social filtering using social relationship for movie recommendation[M]∥Computational Collective Intelligence:Technologies and Applications.Springer Berlin Heidelberg,2012:395-404. 被引量:1
  • 7Ha I,Oh K J,Jo G S.Personalized advertisement system using social relationship based user modeling[J].Multimedia Tools and Applications,2013,74(20):8801-8819. 被引量:1
  • 8Yao W,He J,Huang G,et al.Modeling dual role preferences for trust-aware recommendation[C]∥Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval.ACM,2014:975-978. 被引量:1
  • 9Fazeli S,Loni B,Bellogin A,et al.Implicit vs.explicit trust in social matrix factorization[C]∥Proceedings of the 8th ACM Conference on Recommender systems.ACM,2014:317-320. 被引量:1
  • 10Ma H.An experimental study on implicit social recommendation[C]∥Proceedings of the 36th international ACM SIGIR confe-rence on Research and development in information retrieval.ACM,2013:73-82. 被引量:1

二级参考文献25

  • 1Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 Computer Supported Cooperative Work. Chapel Hill: ACM, 1994. 175-186. 被引量:1
  • 2Hill W C, Stead L, Rosenstein M, Furnas G W. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the 1995 SIGCHI Conference on Human Factors in Computing Systems. Denver: ACM, 1995. 194-201. 被引量:1
  • 3Lam S K, Riedl J. Shilling recommender systems for fun and profit. In: Proceedings of the 13th International Conference on World Wide Web. New York, USA: ACM, 2004. 393-402. 被引量:1
  • 4O'Mahony M P, Hurley N J, Kushmerick N, Silvestre G C M. Collaborative recommendation: a robustness analysis. ACM Transactions on Internet Technology (TOIT), 2004, 4(4): 344-377. 被引量:1
  • 5Mobasher B, Burke R, Sandvig J J. Model-based collaborative filtering as a defense against profile injection attacks. In: Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference. Boston, Massachusetts, USA: AAAI, 2006. 被引量:1
  • 6Gunes I, Kaleli C, Bilge A, Polat H. Shilling attacks against recommender systems: a comprehensive survey. Artificial Intelligence Review, 2014, 42(4): 767-799. 被引量:1
  • 7Mobasher B, Burke R, Williams C, Bhaumik R. Analysis and detection of segment-focused attacks against collaborative recommendation. In: Proceedings of the 7th International Workshop on Knowledge Discovery on the Web. Chicago, IL: Springer Berlin Heidelberg, 2006. 96-118. 被引量:1
  • 8Burke R D, Mobasher B, Williams C, Bhaumik R. Classification features for attack detection in collaborative recommender systems. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, PA, USA: ACM, 2006. 542-547. 被引量:1
  • 9Mehta B, Nejdl W. Attack resistant collaborative filtering. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2008. 75-82. 被引量:1
  • 10O'Mahony M P, Hurley N J, Silvestre G C M. Efficient and secure collaborative filtering through intelligent neighbor selection. In: Proceedings of the 16th European Conference on Artificial Intelligence. Valencia, Spain: IOS Press, 2004. 383-387. 被引量:1

共引文献8

同被引文献27

  • 1Singhal A.Modern information retrieval.:A brief overview [J].IEEE Data Engineering Bulletin,2001,4(4):35-43. 被引量:1
  • 2Salton G,Buckley C.Term-weighting approaches in automatictext retrieval [J].Information Processing & Management,1988,4(5):513-523. 被引量:1
  • 3Bellogín A,Cantador I,Castells P.A comparative study of hetero-geneous item recommendations in social systems [J].Information Sciences,2013,1:142-169. 被引量:1
  • 4Chen Ji-lin,Geyer W,Dugan C,et al.Make New Friends,butKeep the Old-Recommending People on Social Networking Sites [C]∥Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,2009.New York:ACM,2009:201-210. 被引量:1
  • 5Nock N,Nielsen F.On weighting clustering [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,8(8):1223-1235. 被引量:1
  • 6Yu S.The dynamic competitive recommendation algorithm in social network services [J].Information Sciences,2012,7:1-14. 被引量:1
  • 7Lv Lin-yuan,Matus M,Yeung C,et al.Recommender systems [J].Physics Reports,2012,9:1-49. 被引量:1
  • 8Carrer-Neto W,Hernandez-Alcaraz M,Valencia-Garcia R,et al.Social knowledge-based recommender system:Application to the movies domain [J].Expert Systems with Applications,2012,9:10990-11000. 被引量:1
  • 9Kardan A,Ebrahimi M.A novel approach to hybrid recommen-dation systems based on association rules mining for content re-commendation in asynchronous discussion groups [J].Information Sciences,2013,9:93-110. 被引量:1
  • 10Zhou Xian-ke,Wu Sai,Chen Chun,et al.Real-time recommendation for microblogs [J].Information Sciences,2014,9:301-325. 被引量:1

引证文献2

二级引证文献2

投稿分析
职称考试

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈