期刊文献+

Numerical solution to the Bloch equations:paramagnetic solutions under wideband continuous radio frequency irradiation in a pulsed magnetic field

Numerical solution to the Bloch equations: paramagnetic solutions under wideband continuous radio frequency irradiation in a pulsed magnetic field
分享 导出
摘要 A novel nuclear magnetic resonance(NMR) experimental scheme,called wideband continuous wave NMR(WB-CW-NMR),is presented in this article.This experimental scheme has promising applications in pulsed magnetic fields,and can dramatically improve the utilization of the pulsed field.The feasibility of WB-CW-NMR scheme is verified by numerically solving modified Bloch equations.In the numerical simulation,the applied magnetic field is a pulsed magnetic field up to 80 T,and the wideband continuous radio frequency(RF) excitation is a band-limited(0.68-3.40 GHz) white noise.Furthermore,the influences of some experimental parameters,such as relaxation time,applied magnetic field strength and wideband continuous RF power,on the WB-CW-NMR signal are analyzed briefly.Finally,a multi-channel system framework for transmitting and receiving ultra wideband signals is proposed,and the basic requirements of this experimental system are discussed.Meanwhile,the amplitude of the NMR signal,the level of noise and RF interference in WB-CW-NMR experiments are estimated,and a preliminary adaptive cancellation plan is given for detecting WB-CW-NMR signal from large background interference. A novel nuclear magnetic resonance (NMR) experimental scheme, called wideband continuous wave NMR (WB-CW-NMR), is presented in this article. This experimental scheme has promising applications in pulsed magnetic fields, and can dramatically improve the utilization of the pulsed field. The feasibility of WB-CW-NMR scheme is verified by numerically solving modified Bloeh equations. In the numerical simulation, the applied magnetic field is a pulsed magnetic field up to 80 T, and the wideband continuous radio frequency (RF) excitation is a band-limited (0.68-3.40 GHz) white noise. ~lrthermore, the influences of some experimental parameters, such as relaxation time, applied magnetic field strength and wideband continuous RF power, on the WB-CW-NMR signal are analyzed briefly. Finally, a multi-channel system framework for transmitting and receiving ultra wideband signals is proposed, and the basic requirements of this experimental system are discussed. Meanwhile, the amplitude of the NMR signal, the level of noise and RF interference in WB-CW-NMR experiments are estimated, and a preliminary adaptive cancellation plan is given for detecting WB-CW-NMR signal from large background interference.
作者 陈文俊 马洪 余德 曾小虎 Wen-Jun Chen, Hong Ma, De Yu, Xiao-Hu Zeng( 1 School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China 2 School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China)
出处 《中国物理C:英文版》 SCIE CAS CSCD 2016年第8期174-184,共11页 Chinese Physica C
基金 Supported by National Natural Science Foundation of China (11475067), the Innovative Research Foundation of Huazhong University of Science and Technology (2015 ZDTD017) and the Experimental Apparatus Research Project of Wuhan Pulsed High Magnetic Field Center (2015KF17)
关键词 超宽带信号 布洛赫方程 脉冲磁场 射频辐射 数值解 核磁共振信号 实验方案 nmr信号 Bloch equations, numerical solution, pulsed magnetic fields, wideband continuous radio frequencyirradiation, relaxation time
作者简介 E-mail: Chenwenjun_1025@ 163.com
  • 相关文献

参考文献30

  • 1J. R. Miller, IEEE Trans. Appl. Supercond., 13: 1385-1390 (2003). 被引量:1
  • 2M. Jaime, R. Daou, S. A. Crooker et al, Proc. Natl. Acad. Sci., 109:12404-12407 (2012). 被引量:1
  • 3J. Haase, D. Eckert, H. Siegel et al, Solid State Nuc]. Magn. Reson., 23:263-265 (2003). 被引量:1
  • 4B. Meier, S. Greiser, J. Haase et al, J. Magn. Reson., 210:1-6 (2011). 被引量:1
  • 5G. Q. Zheng, K. Katayama, M. Nishiyama et al, J. Phys. Soc. Jpn., 78:095001 (2009). 被引量:1
  • 6E. Abou-Hamad, P. Bontemps, G. L. Rikken, Solid State Nucl. Magn. Reson., 40:42-44 (2011). 被引量:1
  • 7H. Stork, P. Bontemps, G. L. Rikken, J. Magn. Reson.J 234:30-34 (2013). 被引量:1
  • 8H. C. Torrey, Phys. Rev., 76:1059-1068 (1949). 被引量:1
  • 9P. K. Madhu, A. Kumar, Concepts Magn. Reson., 9: 1-12 (1997). 被引量:1
  • 10J. D. Roberts, Concepts Magn. Reson., 3:27-45 (1991). 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈