期刊文献+

基于复合模型的网络异常检测方法及验证

A Research on Compound Model of Network Anomaly Detection
分享 导出
摘要 为了提高网络异常检测的准确性,将核主成分分析与量子粒子群优化最小二乘向量机算法相结合,建立相应的网络异常检测模型。所采用的方法是:首先,通过核主成分分析对网络入侵数据进行降雏,以加快异常检测速率;然后,通过量子粒子群优化算法对最小二乘向量机进行参数优化,提高检测的准确率。仿真结果表明,复合检测模型检测提高了检测速率与准确度,为网络安全提供了保障。 In order to improve the accuracy of network anomaly detection, combined the ker- nel principal component analysis(KPCA) with quantum particle swarm optimization(QPSO) optimizated least squares vector machine (LSSVM), a hybrid network anomaly detection model is established. KPCA is used to reduce the dimensions of network intrusion datas to speed up the detection rate, and then QPSO is applied to optimize the parameters of LSS- VM. Simulation results show that the hybrid detection model improves the rate and accuracy of detection and can provide safeguard for network security.
作者 孙捐利 SUN Juanli (Department of Electronic Techndogy ,Engineering University of PAP, Xi'an 710086 ,China)
出处 《武警工程大学学报》 2016年第6期47-50,共4页 Journal of Engineering College of Armed Police Force
基金 国家自然科学基金青年项目“物联网环境下信任机制的研究”(61402531)
关键词 入侵检测 异常检测 核主成分分析 量子粒子群 最小二乘向量机 network intrusion detection anomaly detection KPCA QPSO LSSVM
作者简介 孙捐利(1978-),男,河北藁城人,密码工程教研室副教授。
  • 相关文献

参考文献5

二级参考文献99

  • 1苏成利,徐志成,王树青.PSO算法在非线性系统模型参数估计中的应用[J].信息与控制,2005,34(1):123-125. 被引量:19
  • 2朱全民.非线性系统辨识[J].控制理论与应用,1994,11(6):641-652. 被引量:17
  • 3瓦普尼克(美)著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000.. 被引量:1
  • 4Sun J,Xu W B.A global search strategy of quantum-behaved particle swarm optimization[C]//Proceedings of IEEE Conference on Cybernetics and Intelligent Systems.[S.l.]: IEEE Press, 2004:111-116. 被引量:1
  • 5Hagenblad A,Ljung L.Maximum likelihood identification of Wiener models with a linear regression initialization[C]//37th IEEE Conf on Decision and Control, 1998:712-713. 被引量:1
  • 6Wigren T.Recursive prediction error identification algorithms based on the nonlinear Wiener model[J].Automatica, 1993,29(4): 1011-1025. 被引量:1
  • 7Angeline P J.Evolutionary optimization versus particle swarm opti- mization:Philosophy and performance differences[C]//Lecture Notes in Computer Science 1477:Evolutionary Programming VIII.[S.l.]: Springer, 1998:601-610. 被引量:1
  • 8Kristinsson K.System identification and control using genetic algorithms[J].IEEE Trans on Systems,Man,and Cybernetics,1992,22 (5) : 1033-1046. 被引量:1
  • 9Hachino T,Katsuhisa D,Takata H.Identification of Hammerstein model using radial basis function networks and genetic algorithm[C]//5th Asian Control Conference,2004. 被引量:1
  • 10Juang J G,Lin B S,Li C K.Parameter estimation of nonlinear system based on hybrid intelligent method[C]//IEEE International Conference on Systems, Man and Cybernetics, 2004:3365-3370. 被引量:1

共引文献271

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈