期刊文献+

基于Codebook背景建模的视频行人检测 预览 被引量:6

Pedestrian detection based on Codebook background modeling in video
在线阅读 下载PDF
收藏 分享 导出
摘要 针对视频序列,Codebook背景建模算法能检测出其中的运动物体,但却无法识别行人。而大部分基于支持向量机(SVM)训练的行人分类器,需要通过滑动窗口遍历图像检测行人。为加快行人检测的速度,提出将传统的行人分类器融入到Codebook背景建模算法中,通过背景建模算法为行人检测提供候选区域,减少搜索范围,降低了行人误检率;并根据行人的特点,构建临时块模型定期将满足条件的前景区域更新到背景模型中,解决了Codebook背景建模算法不能应对光照突变的问题。实验结果表明:所提算法能应对光照突变所带来的干扰,实现视频行人实时检测。 As for video sequences,Codebook background modeling algorithm can detect moving objects,but cannot recognize pedestrians. Meanwhile,most pedestrians classifiers are based on support vector machine( SVM)training has to traverse through the whole image,by sliding window to detect pedestrians. To speed up pedestrian detection process,algorithm of traditional pedestrian classification device fused in Codebook background modeling algorithm is proposed provide candidate regionals by background modeling algorithm for pedestrian detection reduce the search range and error rate of the pedestrian. According to features of pedestrians,temporary block model is built to regularly update into background model,which solve the problem that Codebook background modeling algorithm cannot suit the illumination abrupt variation. Experimental results demonstrate that the proposed algorithm can deal with the interference caused by sudden light variation,it can achieve the real-time pedestrian detection in video.
作者 黄成都 黄文广 闫斌 HUANG Cheng-du1, HUANG Wen-guang2, YAN Bin1 (1. School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; 2. Leshan Electric Power Bureau,Sichuan Electric Power Company of State Grid,Leshan 614000, China)
出处 《传感器与微系统》 CSCD 2017年第3期144-146,共3页 Transducer and Microsystem Technology
关键词 视频 Codebook背景建模 支持向量机 行人检测 video Codebook background modeling support vector machine(SVM) pedestrian detection
  • 相关文献

参考文献3

二级参考文献26

  • 1贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:62
  • 2Stein G P, Mano O, Shshua A. A robust method for computing vehicle ego-motion [ C ]// Proceedings of IEEE Intelligent Vehicles Symposium, Detroit, USA : IEEE ,2000:362-368. 被引量:1
  • 3Broggi A, Bertozzi M, Fascioli A, et al. Shape-based pedestrian detection[ C ]//Proceedings of IEEE Intelligent Vehicles Symposium, Dearborn, USA : IEEE ,2000:215-220. 被引量:1
  • 4Shashua A, Gdalyahu Y, Hayun G. Pedestrian detection for driving assistance systems:Single-frame classification and system level performance [ C ]//Proceedings of IEEE Intelligent Vehicles Symposium, Parma, Italy : IEEE ,2004 : 1-6. 被引量:1
  • 5Liu Xia, Fujimura K. Pedestrian detection using stereo night vision [ J ]. IEEE Transactions on Vehicular Technology, 2004, 53(6) :1657-1665. 被引量:1
  • 6Bertozzi M, Binelli E, Broggi A, et al. Stereo vision-based approaches for pedestrian detection [ C ] // Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA : IEEE ,2005 : 3-16. 被引量:1
  • 7Bertozzi M, Broggi A, Fascioli A, et al. Pedestrian detection for driver assistance using multiresolution infrared vision [ J ]. IEEE Transactions on Vehicular Technology, 2004,53 ( 6 ) : 1666-1678. 被引量:1
  • 8Ran Yang, Zheng Qinfen, Weiss I, et al. Pedestrian classification from moving platforms using cyclic motion pattern [ C ]//Proceedings of International Conference on Image Processing, Genoa, Italy : IEEE ,2005:854-857. 被引量:1
  • 9Broggi A, Fascioli A, Grisleri P, et al. Model-based validation approaches and matching techniques for automotive vision based pedestrian detection[ C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA : IEEE ,2005 : 1-3. 被引量:1
  • 10Leibe B, Seemann E Schiele B. Pedestrian detection in crowded scenes [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA: IEEE, 2005: 878-885. 被引量:1

共引文献35

同被引文献29

引证文献6

二级引证文献5

投稿分析
职称考试

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈