期刊文献+

融合用户评分和属性相似度的协同过滤推荐算法 预览 被引量:4

Collaborative Filtering Recommendation Algorithm Based on User Score and User Attributes Similarity
在线阅读 下载PDF
收藏 分享 导出
摘要 为了提高协同过滤推荐系统的推荐效率和准确性,更好地向用户提供个性化的推荐服务,提出一种用户评分和属性相似度的推荐算法。首先分析当前协同过滤推荐研究的现状,设计评分相似度、兴趣倾向相似度、置信度等作为评分标准,使得用户相似度的计算更加准确、有区分度,然后根据用户属性来衡量用户之间的相似度,最后利用Movie Lens数据集和Book-Crossing数据集做对比试验,对比精度、通用性和不同稀疏度及冷启动情况下的性能。实验结果表明,本文算法不仅提高了推荐精度,而且明显优于其它协同过滤推荐算法,具有更高的实际应用价值。 In order to improve the of efficiency and accuracy of collaborative filtering recommendation, and provide personalized recommendation service to users, a novel collaborative filtering recommendation algorithm based on user score and user attributes similarity is proposed. Firstly, the similarity between the users is calculated according to the similarity of user scores, similarity of the user interest tendency, confidence. Secondly, the similarity between users is measured based on user attributes. Finally, the paper uses MovieLens data set and Book-Crossing data set to do comparative test, such as comparing precision, versatility and performance in different sparsity degree and cold start condition. The result shows that the proposed algorithm not only can im- prove the recommendation accuracy, but also is better than other collaborative filtering algorithms, and it has higher practical ap- plication value.
作者 杨秀萍 YANG Xiu-ping ( Computer Science Department, Guangdong AIB Polytechnic College, Guangzhou 510507, China)
出处 《计算机与现代化》 2017年第7期16-19,共4页 Computer and Modernization
关键词 推荐系统 协同过滤 相似性度量 稀疏性问题 recommendation system collaborative filtering similarity measurement sparsity problem
作者简介 杨秀萍(1978-),女,广东龙川人,广东农工商职业技术学院计算机系讲师,硕士,研究方向:智能信息处理。
  • 相关文献

参考文献4

二级参考文献49

  • 1李德毅 ,刘常昱 .论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:620
  • 2李德毅 ,刘常昱 ,杜鹢 ,韩旭 .不确定性人工智能[J].软件学报,2004,15(11):1583-1594. 被引量:283
  • 3孙小华,陈洪,孔繁胜.在协同过滤中结合奇异值分解与最近邻方法[J].计算机应用研究,2006,23(9):206-208. 被引量:26
  • 4MICHEAL K, DAMIANOS G, ARISTIDES M. A mobile tourism recommender system[ C ]//Proc of the 15th IEEE Symposium on Computers and Communications. 2010 : 840-845. 被引量:1
  • 5ADOMAVICIUS G, TUZHILIN A. Toward the next generation Of recommender systems : a survey of the state-of-the-art and possible exten- sions[J]. IEEE Trans on Knowledge and Data Engineering,2005,17(6) :734-749. 被引量:1
  • 6SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[ C]//Proc of the 10th International Conference on World Wide Web. New York: ACM Press, 2001: 285- 295. 被引量:1
  • 7李雪 左万利 赫枫龄等.传统item-based协同过滤推荐算法改进.计算机研究发展,2009,:394-399. 被引量:1
  • 8HOROZOV T, NARASIMI-IAN N, VASUDEVAN V. Using location for personalized POI recommendations in mobile environments[ C ]//Proc of International Symposium on Application and the Internet. Washington DC :IEEE Computer Society,2006 : 124-129. 被引量:1
  • 9GONG Song-jie. Employing user attribute and item attribute to enhance the collabrative filtering recommendation [J]. Journal of Soft- ware,2009,4(8) :883-889. 被引量:1
  • 10SARWAR B,KARYPIS G,KONSTAN J,et al.hem-based collaborative filtering recommendation algorithms[C] //Proceedings of the 10th International World Wide Web Conference.New York:ACM Press,2001:285-295. 被引量:1

共引文献56

同被引文献34

引证文献4

二级引证文献2

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈