期刊文献+

大数据时代的人工智能范式 预览 被引量:8

Paradigm of artificial intelligence in big data era
在线阅读 下载PDF
分享 导出
摘要 针对传统人工智能范式存在的知识获取成本高、质量差、只能模拟低级智能等弊端,受大数据全样本统计、近似搜索和相关推理的启发,提出了4种AI范式,分别以感知、数据、脑科学、认知为中心.以感知为中心的AI范式主要研究一组分布的、松散耦合的主体如何协同运用它们的知识、技能、信息,为尽可能好地实现各自的或全局的目标或规划;以数据为中心的AI范式的形成是数据从量变到质变的过程,其核心是让数据说话;以脑科学为中心的AI范式旨在打造基于信息通信技术的综合性研究平台;以认知为中心的AI范式研究的目的是用大数据来解决"心智"问题.范式决定了AI的实现途径,不同的范式各有特点、相互补充,无法用一种范式统一全部,最后把AI的各种范式归结为科学研究4大范式. To solve the problems of high cost for knowledge acquisition with poor quality and only simulating low-level intelligence in traditional artificial intelligence paradigm, inspired by the full sample statistic in big data, the approximate searching and the related reasoning, 4 AI paradigms were proposed with perception, data, brain science and cognition as center, respectively. The AI paradigm with perception as center was used to study the distributed and loosely coupled main body to use knowledge, skill and information in coordination and achieve the respective or global goal or plan. The data-centric AI paradigm was formed from quantitative change to qualitative change data, and the core was the data The AI paradigm with brain science as center information and communication technologies was used to make comprehensive research platform based on The research purpose of AI paradigm with cognition as center was to use big data to solve the problem of " mind". The paradigm determines the way to realize the AI, and different paradigms have their own characteristics and complement each other. Any one paradigm cant be unified in one format, and the AI paradigm is attributed to 4 paradigms of scientific research.
作者 程显毅 胡海涛 曲平 程实 CHENG Xianyi1,2, HU Haitao2 , QU Ping3 , CHENG Shi1,2( 1. School of Computer Science and Technology, Nantong University, Nantong, Jiangsu 226019, China; 2. Nantong Research Institute for Advanced Communication Technologies, Nantong, Jiangsu 226019, China; 3. Cheento Information Technology Co., Ltd., Beijing 100080, China)
出处 《江苏大学学报:自然科学版》 CSCD 北大核心 2017年第4期455-460,共6页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(61340037,61171132) 南通大学自然科学基金资助项目(14Z008) 南通大学-南通智能信息技术联合研究中心科研项目(KFKT2016B06)
关键词 脑科学 感知 认知 人工智能 范式 大数据 brain science perception cognition artificial intelligence paradigm big data
作者简介 程显毅(1956-),男,黑龙江哈尔滨人,教授,博士(xycheng@ntu.edu.cn),主要从事人工智能应用研究. 胡海涛(1991-),男,江苏徐州人,硕士研究生(569762879@qq.com),主要从事人工智能应用研究.
  • 相关文献

参考文献7

二级参考文献217

  • 1田颖,张书余,罗斌,马守存,周骥.热浪对人体健康影响的研究进展[J].气象科技进展:英文版,2013(2):49-54. 被引量:12
  • 2Nature. Big Data [EB/OL]. [2012-10-02]. http,//www. nature, com/news/specials/bigdata/index, html. 被引量:1
  • 3Bryant R E, Katz R H, Lazowska E D. Big-Data computing : Creating revolutionary breakthroughs in commerce, science, and society [R]. [2012-10-02]. http:// www. cra. org/ccc/docs/init/Big_Data, pdf. 被引量:1
  • 4Science. Special online collection: Dealing with data [EB/OL]. [2012-10-02]. http://www, sciencemag, org/site/ special/data/, 2011. 被引量:1
  • 5Agrawal D, Bernstein P, Bertino E, et al. Challenges and opportunities with big data A community white paper developed by leading researchers across the United States [R/OL]. [2012-10-02]. http://cra, org/ccc/docs/init/bigdata whitepaper, pdf. 被引量:1
  • 6Manyika J, Chui M, Brown B, et al. Big data: The next frontier for innovation, competition, and productivity [R/OL]. [ 2012-10-02 ]. http://www, mekinsey, corn/ Insights]MGI[Research/Teehnology _ and _ Innovation]Big _ data The next frontier for innovation. 被引量:1
  • 7World Economic Forum. Big data, big impact: New possibilities for international development [R/OL]. [2012- 10-02]. http://www3, weforum, org/docs/WEF TC MFS BigDataBigImpact_Briefing 2012. pdf. 被引量:1
  • 8Big Data Across the Federal Government [EB/OL]. [2012-10-02]. http://www, whitehouse, gov/sites/default/ files/microsites/ostp/big_data fact sheet_final_ 1. pdf. 被引量:1
  • 9UN Global Pulse. Big Data for Development:Challenges Opportunities [R/OL]. [ 2012-10-02 ]. http://www. unglobalpulse, org/proj ects/BigDataforDevelopment. 被引量:1
  • 10Times N Y. The age of big data fEB/OLd. [2012-10 -02]. http://www, nytimes, com/2012/02/12/sunday review/big- datas-impact in-the-world, html?pagewanted=all. 被引量:1

共引文献1880

同被引文献40

引证文献8

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈