期刊文献+

基于小生境遗传禁忌的粗糙聚类分析算法 预览

Rough clustering algorithm based on niche generic and tabu search
在线阅读 下载PDF
分享 导出
摘要 K-Means算法对于初始中心点敏感,容易受到噪声干扰,无法处理非确定性问题等缺陷,且其改进遗传K-Means容易陷入到局部最优解中,粗糙聚类算法虽提升了算法对于不确定性问题的分析能力,但其仍有较大的提升空间。为此,提出将遗传算法与粗糙集理论结合起来,引入小生境和禁忌算法的思想,在计算数据集合的各个中心点时,采用遗传算法计算各个类别的粗糙均值点,遗传算法中的选择运算采用小生境技术,将禁忌算法作为变异算子。通过对4组UCI数据集的实验分析与比较,表明了所提算法具有更好的求解质量。 To solve defects of K-Means that it is sensitive to initial centers and noise,and that it cannot deal with uncertain problems,many improving algorithms are provided.The clustering analysis based on genetic algorithm can improve its ability but it easily plugs into a local optimum.Rough clustering algorithm can deal with uncertain problems,and it has good robustness,but it has more improving potential for its correction.The rough clustering algorithm based on niche generic and tabu search was proposed,the mentioned two algorithms were combined.Generic algorithm was used to compute the rough center of data,and niche technology was used in the selection operation,and the tabu search was used as the mutation operation.Four experiments based on UCI datasets were carried out,the results verified the efficiency of the proposed algorithm.
作者 欧阳浩 王智文 黄镇谨 OUYANG Hao, WANG Zhi-wen, HUANG Zhen-jin(Computer and Communication Engineering School, Guangxi University of Science and Technology, Liuzhou 545006, China)
出处 《计算机工程与设计》 北大核心 2017年第10期2718-2722,2739共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61462008) 柳州市科学研究与技术开发计划基金项目(2016C050205) 广西科技大学创新团队基金项目(0316000209) 广西科技大学校科自基金项目(174523) 广西高校图形图像智能处理重点实验室基金项目(GIIP201508) 广西教育厅中青年教师基础能力提高基金项目(KY2016YB252)
关键词 聚类 禁忌搜索 遗传算法 粗糙集 小生境 clustering tabu search generic algor ithm rough set niche
作者简介 欧阳浩(1979-),男,湖南岳阳人,硕士,讲师,研究方向为人工智能与数据挖掘; E-mail:ouyanghao@tom.com 王智文(1969-),男,湖南邵阳人,博士,教授,硕士生导师,CCF会员,研究方向为视频图像处理与人类行为识别; 黄镇谨(1975-),男,广西南宁人,博士,副教授,CCF会员,研究方向为数据分析与性能分析.
  • 相关文献

参考文献3

二级参考文献32

  • 1吕强,俞金寿.基于混合遗传算法的K—Means最优聚类算法[J].华东理工大学学报:自然科学版,2005,31(2):219-222. 被引量:6
  • 2陆林花,王波.一种改进的遗传聚类算法[J].计算机工程与应用,2007,43(21):170-172. 被引量:24
  • 3Pawlak Z. Rough sets[J]. International Journal of Information Computer Sciences, 1982,11 : 145-172. 被引量:1
  • 4Lingras P, West C. Interval set clustering of web users with rough k-means[J]. Journal of Intelligent Information Systems, 2004,23(1) :5-16. 被引量:1
  • 5Mitra S, Banka H, Pedrycz W. Rough-Fuzzy collaborative clustering[J]. IEEE Transactions on Systems, Man, and Cybernetics- Part B.. Cybernetics, 2006,36 (4): 795-805. 被引量:1
  • 6Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum, 1981. 被引量:1
  • 7Pedryez W. Shadowed sets: representing and processing fuzzy sets[J]. IEEE Transactions on Systems, Man, and Cybernetics- Part B.-Cybernetics, 1998,28(1): 103-109. 被引量:1
  • 8Pakhira M K, Bandyopadhyay S, Maulik U. Validity index for crisp and fuzzy clusters[J]. Pattern Recognition, 2004,37 : 487- 501. 被引量:1
  • 9Davies D L, Bouldin D W. A cluster separation measure[J]. IEEE Trans, Pattern Anal. Mach. Intell. , 1979,1:224-227. 被引量:1
  • 10Xie X L, Beni G. A validity measure for fuzzy clustering[J]. IEEE Trans. Pattern Anal. Mach. Intell, 1991,13 (8) :841-846. 被引量:1

共引文献22

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈