期刊文献+

一种自适应协方差的低复杂度图像放大方法 预览

Low complexity image magnification method based on adaptive covariance
在线阅读 下载PDF
收藏 分享 导出
摘要 对于图像放大技术而言,重要的就是要权衡到图像质量以及计算复杂度。传统的基于线性或三次样条插值的方法会带来图像模糊和锯齿边缘等失真,为了解决这一问题,人们提出一种基于迭代和学习的算法,但是这种方法带来了很高的计算复杂度。综合以上几点本文提出了一种基于自适应协方差的图像放大方法(adaptive covariance-based edge diffusion,ACED)。该方法能很好地权衡图像放大性能和复杂度之间的关系。在这种方法中,提出了一种联合边缘判别准则,并自适应选择扩散模板来估计局部协方差系数,以高效的减少图像放大带来的失真。实验结果表明,所提出的方法在主观质量和客观质量上都有很大的提升,同时也具有较低的计算复杂度。 For image magnification technology,it is important to weigh the image quality and computational complexity. The traditional method based on linear or three spline interpolation can cause the distortion of image blur and jagged edges. In order to solve this problem,we propose an algorithm based on iteration and learning,but this method brings a high computational complexity.Based on the above points,this paper proposes an image magnification method called adaptive covariance-based edge diffusion( ACED) which is based on adaptive covariance. This method can well balance the relationship between image magnification and complexity. In this method,in order to reduce the distortion caused by the image magnification,this paper proposes a joint edge criterion to estimate the local covariance coefficient by adaptively selecting diffusion template. The experimental results show that the proposed method has a great improvement in both subjective and objective quality,and it also has a low computational complexity.
作者 朱海 王国中 ZHU Hai, WANG Guozhong (School of Communication and information Engineering,Shanghai University, Shanghai 200444, China )
出处 《电视技术》 北大核心 2017年第7期126-130,共5页 Tv Engineering
基金 国家自然科学基金项目(61271212) 国家863计划项目(2015AA015903)
关键词 图像放大 自适应协方差 数字电视 Image magnification adaptive covariance digital television
作者简介 朱海(1993-)。硕士生,主研图像处理、多媒体通信;王国中(1962-),博士生导师,主研视频编解码与多媒体通信、图像处理、数字电视、视频云计算等。
  • 相关文献

参考文献3

二级参考文献142

  • 1张阿珍,刘政林,邹雪城,向祖权.基于双三次插值算法的图像缩放引擎的设计[J].微电子学与计算机,2007,24(1):49-51. 被引量:25
  • 2UNSER M,ALDROUBI A,EDEN M.Fast B-spline transform for continuous image representation and interpolation[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1991(3):277-285. 被引量:1
  • 3SHEZAF N,ABRAMOV-SEGAL H,SUTSKOVER I,et al.Adaptive low complexity algorithm for image zooming at fractional scaling ratio[J].The 21st IEEE Convention of the Electrical and Electronic Engineers.Israel:IEEE,2000:253-256. 被引量:1
  • 4Capel D, Zisserman A. Computer vision applied to super resolution. IEEE Signal Processing Magazine, 2003, 20(3): 75-86. 被引量:1
  • 5Tsai R Y, Huang T S. Multiframe image restoration and registration. Advances in Computer Vision and Image Pro- cessing: 1984, 1:317-339. 被引量:1
  • 6Borman S, Stevenson R. Spatial Resolution Enhancement of Low-resolution Image Sequences: A Comprehensive Re- view with Directions for Future Research, Technical Report, Laboratory Image and Signal Analysis, University of Notre Dame. 1998. 被引量:1
  • 7Chaudhuri S. Super-Resolution Imaging. Boston: Kluwer Academic Publishers, 2001. 被引量:1
  • 8Park S C, Park M K, Kan M G. Super-resolution image re- construction: a technical overview. IEEE Signal Processing Magazine, 2003, 20(3): 21-36. 被引量:1
  • 9Van Ouwerkerk J D. Image super-resolution survey. Image and Vision Computing, 2006, 24(10): 1039-1052. 被引量:1
  • 10Katartzis A, Petrou M. Current trends in super-resolution image reconstruction. Image Fusion: Algorithms and Appli- cations. New York: Academic Press. 2008. 被引量:1

共引文献110

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈
新型冠状病毒肺炎防控与诊疗专栏