期刊文献+

基于多元退化数据的航空机电系统竞争故障预测 预览

Aviation Electro-mechanical System Based on Multiple Degradation Data Competition Fault Prediction
在线阅读 下载PDF
分享 导出
摘要 针对基于多元退化数据的航空机电系统竞争故障预测问题,根据复杂机电系统的故障模糊特点,在退化数据和突发数据相关度的基础上,分析了航空机电装备的退化特性,而且建立了以多元退化数据为指标的航空机电系统中的预测模型。针对航空机电系统退化参数的非线性、小样本的特点,运用最小二乘支持向量机预测模型对未来某一时刻参数进行预测,并用退化量和突发故障求出的相关度得出退化量和突发故障的相关参数,从而根据航空机电系统竞争故障预测模型得出航空机电系统未来某一时刻的竞争故障概率。最后,实例分析,实现了航空机电系统的竞争故障预测,并与其它预测方法进行了对比,验证了此方法的合理性。 For aviation electro-mechanical system based on multiple degradation data competition fault prediction problem,according to the fault fuzzy characteristics of complex electromechanical system,on the basis of the degradation data and data correlation,the degradation of aviation electromechanical equipment features are analyed and aviation electro-mechanical system is set up based on multiple degradation data competition fault prediction model.On aviation electro-mechanical system degradation parameters of the characteristics of nonlinear and small sample,the least squares support vector machine forecasting model is used to forecast the future at some point parameters,and degradation and sudden fault and the correlation of the degradation and the related parameters of fault is given,and according to the forecast model of aviation electro-mechanical system competition at a certain moment this paper concludes that aviation electro-mechanical system in the future competition in the probability of failure.Finally,according to the example analysis,the competition of aviation electro-mechanical system fault prediction is realized,and compared with other forecasting methods,the rationality of this method is verified.
出处 《舰船电子工程》 2018年第4期106-110,共5页 Ship Electronic Engineering
关键词 竞争故障 性能退化 航空机电系统 最小二乘支持向量机 competitive failure performance degradation aviation electromechanical systems least squares support vector machines
作者简介 孟蕾,女,博士研究生,研究方向:装备故障与健康管理。;许爱强,男,教授,博士生导师,研究方向:故障诊断和自动测试设备。;董超,男,讲师,研究方向:数学应用。
  • 相关文献

参考文献8

二级参考文献71

共引文献133

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈