期刊文献+

改进粒子群算法优化的五连杆机器人分数阶PID控制器 预览

Improved particle swarm optimization algorithm for five link robot fractional PID controller
在线阅读 下载PDF
收藏 分享 导出
摘要 针对机器人传统PID控制系统响应速度慢、输出不稳定性等问题,采用改进PID控制器,引入改进粒子群算法,将自适应加速器参数插入粒子群算法的原始速度更新公式,从而加快算法的收敛速度.采用改进粒子群算法优化分数阶PID控制器,将改进后的PID控制器用于五连杆机器人电机转速响应分析.仿真曲线表明:采用传统PID控制器,响应时间为0.5 s,上下波动次数较多;采用改进PID控制器,响应时间为0.2 s,上下波动次数较少.五连杆机器人采用改进粒子群算法优化分数阶PID控制器,能够快速地提高机器人控制系统运动的稳定性,降低输出误差. In view of the slow response speed and output instability of the traditional PID control system of the robot,the improved PID controller is adopted.According to the geometric parameters,the dynamic equation of the five link robot is derived.An improved particle swarm optimization algorithm is introduced to insert adaptive accelerator parameters into particle swarm optimization algorithm,so as to accelerate the convergence speed of algorithm.The improved particle swarm optimization algorithm is used to optimize the fractional PID controller.The improved PID controller is applied to the speed response analysis of the five link robot motor.The simulation curve shows that the response time is 0.5 s and the fluctuation times are more with the traditional PID controller,the response time is 0.2 s with the improved PID controller and the fluctuation times are less.The improved particle swarm optimization(PSO)algorithm is used to optimize the fractional order PID controller for the five link robot,which can quickly improve the stability of the motion of the robot control system and reduce the output error.
作者 许艳英 包宋建 XU Yanying;BAO Songjian(College of Mechanical and Electrical Engineering,Chongqing Creation Vocational College,Chongqing 402160,China;School of Electronic and Electrical Engineering,Chongqing University of Arts and Sciences,Chongqing 402160,China)
出处 《中国工程机械学报》 北大核心 2018年第5期431-435,共5页 Chinese Journal of Construction Machinery
基金 重庆科创职业学院重点资助项目(17KCZN01) 重庆文理学院科研资助项目(Z2016DQ05)
关键词 改进粒子群算法 五连杆 机器人 PID控制器 仿真 improved particle swarm optimization five link robot PID controller simulation
  • 相关文献

参考文献7

二级参考文献24

共引文献13

投稿分析
职称考试

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈