期刊文献+

一种有效缓解数据稀疏问题的协同过滤推荐算法 预览

An efficient recommendation algorithm for relieving data sparsity in collaborative filtering
在线阅读 免费下载
收藏 分享 导出
摘要 文章针对数据的稀疏会导致传统的协同过滤(collaborative filtering,CF)推荐算法不能准确地查找到最近邻居问题,提出了一种改进的基于用户Tanimoto相似性系数预填充的算法,通过改进的Tanimoto相似性系数得到更加合理的用户相似度,并结合提出的预测公式对目标用户的未评分项进行预测评分和填充,从而降低矩阵的数据稀疏度。实验结果表明,该算法对稀疏数据集具有较好的表现,能够提高推荐的质量。 Considering the data sparsity of user-item rating matrix, it is difficult to find the closest neighbors with traditional collaborative filtering(CF) recommendation algorithm. In this paper, a pre-filling algorithm based on improved Tanimoto similarity coefficient is proposed. The application of improved Tanimoto similarity coefficient is helpful for obtaining more reasonable user similarity, and a novel formula is used in the prediction of missing values, which can reduce the data sparsity of the matrix. The experimental results show that the proposed algorithm has better performance on sparse data sets and improves the quality of recommendation.
作者 张清 于博 王辉 邓林 ZHANG Qing;YU Bo;WANG Hui;DENG Lin(Information Construction and Development Center, Hefei University of Technology, Hefei 230009, China)
出处 《合肥工业大学学报:自然科学版》 CAS 北大核心 2019年第4期473-478,共6页 Journal of Hefei University of Technology(Natural Science)
基金 国家国际科技合作专项资助项目(2015DFI12950) 安徽省重大教学改革资助项目(2014zdjy011).
关键词 数据稀疏 协同过滤(CF) Tanimoto相似性系数 推荐算法 矩阵填充 data sparsity collaborative filtering(CF) Tanimoto similarity coefficient recommendation algorithm matrix filling
作者简介 张清(1989-),男,安徽蚌埠人,合肥工业大学工程师;邓林(1961-),男,湖北宜昌人,博士,合肥工业大学研究员.
  • 相关文献

参考文献8

二级参考文献101

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:57
  • 2Xu HL,Wu X,Li XD,Yan BP.Comparison study of Internet recommendation system.Journal of Software,2009,20(2):350-362 (in Chinese with English abstract).http://www.jos.org.cn/1000-9825/3388.htm[doi:10.3724/SP.J.1001.2009.03388]. 被引量:1
  • 3Marlin B.Collaborative Filtering:A machine learning perspective[MS.Thesis].Toronto:University of Toronto,2004. 被引量:1
  • 4Hofmann T.Latent semantic models for collaborative filtering.ACM Trans.on Information System,2004,22(1):89-115.[doi:10.1145/963770.963774]. 被引量:1
  • 5Blei DM,Ng AY,Jordan MI.Latent Dirichlet allocation.Journal of Machine Learning Research,2003,3(3):993-1022.[doi:10.1162/ jmlr.2003.3.4-5.993]. 被引量:1
  • 6Netflix update:Try this at home.2006.http://sifter.org/~simon/journal/20061211.html. 被引量:1
  • 7Zhang S,Wang WH,Ford J,Makedon F.Learning from incomplete ratings using non-negative matrix factorization.In:Ghosh J,ed.Proc.of the 6th SIAM Conf.on Data Mining.Bethesda:SIAM,2006.549-553. 被引量:1
  • 8Cheng YZ,Church GM.Biclustering of expression data.In:Bourne PE,ed.Proc.of the 8th Int'l Conf.on Intelligent Systems for Molecular Biology.La Jolla:AAAI Press,2000.93-103.[doi:10.1016/j.ipm.2008.12.004]. 被引量:1
  • 9Cheng G,Wang F,Zhang CS.Collaborative filtering using orthogonal nonnegative matrix tri-factorization.Information Processing & Management,2009,45(3):368-379. 被引量:1
  • 10Shan HH,Banerjee A.Bayesian co-clustering.In:Altman R,ed.Proc.of the ICDM 2008.Washington:IEEE Computer Society Press,2008.530-539. 被引量:1

共引文献155

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈