期刊文献+

基于EEMD-CC和PCA的风电齿轮箱状态监测方法 预览

Condition Monitoring of Wind Turbine Gearbox Based on EEMD-CC and PCA
在线阅读 下载PDF
分享 导出
摘要 齿轮箱是风力发电机组的核心传动部件,不仅结构复杂制造成本高,而且故障率高维修费用巨大,对其进行状态监测具有重要意义。针对风电齿轮箱在复杂工况下运行所产生的非线性、非平稳振动信号,提出了一种基于EEMD-CC和PCA的风电齿轮箱状态监测方法。该方法先对含有大量噪声的风电齿轮箱振动信号进行集合经验模态分解和相关系数(EEMD-CC)降噪处理。然后,将降噪后的正常信号数据进行主分量分析(PCA)建模,并以T~2统计量和SPE统计量作为信号异常的评判指标。最后,把降噪后的测试数据带入PCA模型中,分别判断T~2和SPE值是否超出阈值,实现风电齿轮箱的状态监测。试验结果证明,该方法能够有效地监测风电齿轮箱的状态。 As the key part of wind turbine,gearbox consists of a large amount of complex parts and has a high incidence failure,and the costs of production and maintenance are especially expensive. Thus,it is meaningful to monitor the status of it. The vibration signals generated by the wind power gearbox under complex operating conditions are non-stationary and nonlinear. A wind turbine gearbox condition monitoring method based on Ensemble Empirical Mode Decomposition and Correlation Coefficien t(EEMD-CC)and Principal Component Analysi s(PCA)is proposed to analyze the vibration signals.Firstly,the vibration signal of wind power gearbox was denoised by EEMD-CC. Then,a model for normal vibration signal data was established by PCA and using T~2 and SPE statistics as evaluation indexes. Finally,the denoised test data was brought into the PCA model,and determined whether the T~2 and SPE values exceed the threshold. The experimental results show that the proposed method can effectively monitor the status of wind turbine gearbox.
作者 马越 陈捷 洪荣晶 潘裕斌 MA Yue;CHEN Jie;HONG Rong-jing;PAN Yu-bin(College of Mechanical and Power Engineering,Nanjing Tech University,Jiangsu Nanjing 210009,China)
出处 《机械设计与制造》 北大核心 2019年第5期67-71,共5页 Machinery Design & Manufacture
基金 2013国家自然科学基金(51375222) 2014年度高校"青蓝工程"中青年学术带头人 江苏省研究生教育教学改革课题(KYCX17_0937).
关键词 风电齿轮箱 EEMD-CC降噪 主分量分析 状态监测 Wind Turbine Gearbox EEMD-CC Noise Reduction PCA Condition Monitoring
作者简介 马越,(1993-),男,江苏扬州人,硕士研究生,主要研究方向:机械制造及自动化;陈捷,(1971-),女,云南人,博士研究生,硕士生导师,教授,主要研究方向:风电齿轮箱状态监测与故障诊断等.
  • 相关文献

参考文献10

二级参考文献103

  • 1单晓明,宋云峰,黄金泉,仇小杰,鲁峰,.基于神经网络和模糊逻辑的航空发动机状态监视[J].航空动力学报,2009(10):2356-2361. 被引量:19
  • 2王春,彭东林.Hilbert-Huang变换及其在去噪方面的应用[J].仪器仪表学报,2004(z3):42-45. 被引量:33
  • 3Mandelbrot B B, van Ness J W. Fractional Brownian Motions, Fractional Noises and Applications[J]. SIAM Rev., 1968, 10(4): 422-437. 被引量:1
  • 4Peng C K, Buldyrev S V, Havlin S, et al. Mosaic Organization of DNA Nucleotides[J]. Physical Review E, 1994, 49(2): 1685-1689. 被引量:1
  • 5Kantelhard J W, Zschiegner S A, Eva K B, et al. Multiffactal Detrended Fluctuation Analysis of Nonstationary Time Series[J].Physica A: Statistical Mechanics and Its Applications, 2002, 316(1-4): 87-114. 被引量:1
  • 6Crabtree C J, Feng Y, Tavner P J. Detecting incipient wind turbine gearbox failure., a signal analysis method for on-line condition monitoring[C]//Proceeding of European Wind Energy Conference, Poland, 2010. 被引量:1
  • 7Hameed Z, Hong Y S, Cho Y M, et al. Condition monitoring and fault detection of wind turbines and related algorithms: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1): 1-39. 被引量:1
  • 8Amirat Y, Benbouzid M, A1-Ahmar E. A brief status on condition monitoring and fault diagnosis in wind energy conversion systems[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2629-2636. 被引量:1
  • 9Lu Bin, Li Yaoyu, Wu Xin. A review of recent advance in wind turbine condition monitoring and fault diagnosis [C]//Proceedings of Power Electronics and Machines in Wind Application, Lincoln, 2009: 1-7. 被引量:1
  • 10Zaher A, McArther S D J, Infield D G, et al. Online wind turbine fault detection through automated scada data analysis[J]. Wind Energy , 2009, 12(6): 574-593. 被引量:1

共引文献158

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈