期刊文献+

三种不同对流结构的行波斑图

Three types of traveling wave patterns with different convection structures
分享 导出
摘要 利用二维数值分析,探讨了长高比Γ=20、分离比ψ=-0.4的三种行波对流斑图。结果表明:在r?(1.67,2.0]范围内出现了具有两个间歇性缺陷的行波斑图,第一缺陷和第二缺陷发生的位置固定;第一缺陷的出现周期随着相对瑞利数r的增加而增加。当相对瑞利数r较小时,第二缺陷的出现周期不确定;当相对瑞利数r较大时,第二缺陷的出现周期随着相对瑞利数r的增加而增加。在r?(2.0,2.59]范围内出现了具有一个间歇性缺陷的行波斑图,缺陷发生的位置不固定;缺陷的出现周期随着相对瑞利数r的增加而增加。在r?(2.59,4.6]范围内出现无缺陷的行波斑图,这说明随着相对瑞利数r的增加,行波对流结构变得简单化;同时发现不同的行波对流结构有不同的对流振幅变化过程。 A simple algorithm is used to simulate the basic equations of fluid mechanics,and the dynamic characteristics of the traveling wave patterns in binary fluid convection in the rectangular cavity with an aspect ratioΓ=20 and with a separation ratioψ=-0.4 are discussed.It is found that three kinds of traveling wave patterns occur in convective system with the increase of reduced Rayleigh number r.The traveling wave pattern with two intermittent defects is generated at the reduced Rayleigh number r?(1.67,2.0],where the position of the first defect and the second defect is fixed.The appearance period of the first defect increases with the increase of reduced Rayleigh number r.When the reduced Rayleigh number is smaller,the appearance period of the second defect is irregular.When the reduced Rayleigh number is large,the appearance period of the second defect increases with the increase of reduced Rayleigh number r.The traveling wave pattern with intermittent defect is generated at the reduced Rayleigh number r?(2.0,2.59],where the position of the defect is not fixed.The appearance period of the defect increases with increasing reduced Rayleigh number r.The traveling wave pattern without the defect is formed at the reduced Rayleigh number r?(2.59,4.6].This shows that the structure of traveling wave convection is simplified with the increase of the reduced Rayleigh number.Finally,It is found that the convection structures of different traveling waves possess different variation process of the convection amplitude.
作者 宁利中 刘爽 宁碧波 袁喆 田伟利 渠亚伟 Ning Lizhong;Liu Shuang;Ning Bibo;Yuan Zhe;Tian Weili;Qu Yawei(Xi’an University of Technology,710048,Xi’an,China;Jiaxing University,314001,Jiaxing,China;Shanghai University,200444,Shanghai,China)
出处 《应用力学学报》 CAS CSCD 北大核心 2019年第2期394-399,509-510共7页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(10872164) 西北旱区生态水利国家重点实验室基金(2017ZZKT-2).
关键词 行波 缺陷 分离比 traveling wave defect separation ratio aspect ratio binary fluid mixture
作者简介 第一作者:宁利中,男,1961年生,博士,西安理工大学,教授;研究方向——对流动力学、高速水力学。E-mail:ninglz@xaut.edu.cn.
  • 相关文献

参考文献7

二级参考文献140

  • 1宁利中 ,原因义文 ,八幡英雄 .中等长高比腔体内的局部行进波对流[J].水动力学研究与进展:A辑,2004,19(4):469-474. 被引量:8
  • 2Chandrasekhar S.Hydrodynamic and Hydromagnetic Stability[M].Oxford:Clarendon Press,1961. 被引量:1
  • 3Getling A V.Rayleigh-Benard Convection[M].London:World Scientific,1998. 被引量:1
  • 4Hurle D T J,Jakeman E.Soret-driven thermosolutal convection[J].J Fluid Mech,1971,47:667-687. 被引量:1
  • 5Ning L Z.Rayleigh-Benard Convection in a Binary Fluid Mixture with and without Lateral Flow[M].Xi'an:Northwest A & F University Press,Oct.2006. 被引量:1
  • 6Cross M C,Hohenberg P C.Pattern formation outside of equilibrium[J].Rev Mod Phys,1993,65(3):998-1011. 被引量:1
  • 7Moses E,Fineberg J,Steinberg V.Multistability and confined traveling-wave patterns in a convecting binary mixture[J].Phys Rev A,1987,35:2757-2760. 被引量:1
  • 8Heinrichs R,Ahlers G,Cannel D S.Traveling waves and spatial variation in the convection of a binary mixture[J].Phys Rev A,1987,35:2761-2764. 被引量:1
  • 9Niemela J J,Ahlers G,Cannell D S,Ahlers G.Localized traveling-wave states in binary-fluid convection[J].Phys Rev Lett,1990,64:1365-1368. 被引量:1
  • 10Kolodner P.Arbitrary-width confined states of traveling-wave convection,pinning,locking,drift,and stability[J].Phys Rev E,1993,48:4187-4190. 被引量:1

共引文献40

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈