期刊文献+

Secondary Plant Metabolites of Natural Product Origin—<i>Strongylodon macrobotrys</i>as Pitting Corrosion Inhibitors of Steel around Heavy Salt Deposits in Gabu, Nigeria

Secondary Plant Metabolites of Natural Product Origin—<i>Strongylodon macrobotrys</i>as Pitting Corrosion Inhibitors of Steel around Heavy Salt Deposits in Gabu, Nigeria
在线阅读 免费下载
收藏 分享 导出
摘要 Investigation into the Inhibition of pitting corrosion in mild steel around heavy salt deposits by some selected secondary plant metabolites—alkaloid extract (AESML), saponin extract (SESML and flavonoid extract (FESML) of natural product origin—Strongylodon macrobotrys was successfully completed with the aid of electrochemical impedance spectroscopy, potentiodynamic polarization, gravimetric and gasometric experimentation. The research proved that the selected secondary plant metabolites were excellent inhibitors of mild steel in the salt water environment as inhibition efficiency was recorded at 99.2%, 92.6% and 84.7% for AESML, SESML and FESML. The inhibitors showed higher inhibition at lower temperature due to frequent scale redeposition from agitation in temperature rise and loss in collision of the molecules. The potentiodynamic polarization result confirmed the reduction in the loss of electrons at the anode by the inhibitors that would have trigger oxidation reaction that causes the anode to corrode. Charge transfer resistance reflected the maximum inhibition efficiency obtained for mild steel at maximum concentration and the decrease in double layer capacitance is due to the decrease of the area where electrolyte is present due to the formation of inhibitor film. Thermodynamic investigation shows that the inhibitor has the potential of increasing the energy of the intermediate, reducing both the number of collisions, and number of particles that have enough energy to react and also number of corrosion reaction particles with the correct orientation. The adsorption isotherm consideration shows physical adsorption mechanism with binding constant increasing with increasing temperature. Investigation into the Inhibition of pitting corrosion in mild steel around heavy salt deposits by some selected secondary plant metabolites—alkaloid extract (AESML), saponin extract (SESML and flavonoid extract (FESML) of natural product origin—Strongylodon macrobotrys was successfully completed with the aid of electrochemical impedance spectroscopy, potentiodynamic polarization, gravimetric and gasometric experimentation. The research proved that the selected secondary plant metabolites were excellent inhibitors of mild steel in the salt water environment as inhibition efficiency was recorded at 99.2%, 92.6% and 84.7% for AESML, SESML and FESML. The inhibitors showed higher inhibition at lower temperature due to frequent scale redeposition from agitation in temperature rise and loss in collision of the molecules. The potentiodynamic polarization result confirmed the reduction in the loss of electrons at the anode by the inhibitors that would have trigger oxidation reaction that causes the anode to corrode. Charge transfer resistance reflected the maximum inhibition efficiency obtained for mild steel at maximum concentration and the decrease in double layer capacitance is due to the decrease of the area where electrolyte is present due to the formation of inhibitor film. Thermodynamic investigation shows that the inhibitor has the potential of increasing the energy of the intermediate, reducing both the number of collisions, and number of particles that have enough energy to react and also number of corrosion reaction particles with the correct orientation. The adsorption isotherm consideration shows physical adsorption mechanism with binding constant increasing with increasing temperature.
出处 《材料科学与化学工程(英文)》 2020年第5期38-60,共23页 Journal of Materials Science and Chemical Engineering
关键词 KEYWORDS Corrosion ELECTROCHEMISTRY Polarization Adsorption Strongylodon macrobotrys Gasometric Keywords Corrosion Electrochemistry Polarization Adsorption Strongylodon macrobotrys Gasometric
  • 相关文献
论文智能改写系统
维普数据出版直通车
投稿分析
职称考试

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈