期刊文献+
共找到785篇文章
< 1 2 40 >
每页显示 20 50 100
基于半监督假设的半监督稀疏度量学习 预览
1
作者 王倩影 李炜 《计算机应用与软件》 北大核心 2019年第10期134-138,共5页
传统的有监督度量学习算法没有利用大量存在的无标记样本,且得到的度量矩阵复杂,难以了解不同原始特征的重要程度。针对这些情况,提出基于半监督假设的半监督稀疏度量学习算法。根据三样本组约束建立间隔损失函数;基于平滑假设、聚类假... 传统的有监督度量学习算法没有利用大量存在的无标记样本,且得到的度量矩阵复杂,难以了解不同原始特征的重要程度。针对这些情况,提出基于半监督假设的半监督稀疏度量学习算法。根据三样本组约束建立间隔损失函数;基于平滑假设、聚类假设、流形假设这三个半监督假设建立半监督正则项,并利用L1范数建立稀疏正则项;利用梯度下降法求解目标函数。实验结果表明,该算法学习得到的度量能有效地使不同类别的样本间距离增大,度量矩阵具有稀疏性,分界面穿过低密度区域,该算法在UCI的样本数据集上具有良好的分类准确性。 展开更多
关键词 度量学习 监督学习 监督假设 稀疏
在线阅读 下载PDF
半监督聚类综述 预览
2
作者 秦悦 丁世飞 《计算机科学》 CSCD 北大核心 2019年第9期15-21,共7页
半监督聚类是结合半监督学习与聚类分析而提出的新的学习方法,其在机器学习中得到了广泛的重视和应用。传统无监督聚类算法在划分数据时并不需要任何数据属性,但在实际应用中,存在少量带有独立类标签或成对约束的监督信息的数据样本,学... 半监督聚类是结合半监督学习与聚类分析而提出的新的学习方法,其在机器学习中得到了广泛的重视和应用。传统无监督聚类算法在划分数据时并不需要任何数据属性,但在实际应用中,存在少量带有独立类标签或成对约束的监督信息的数据样本,学者们致力于将这些为数不多的监督信息运用于聚类,以得到更优的聚类结果,从而提出了半监督聚类。文中主要介绍了半监督聚类的理论基础和算法思想,并对半监督聚类的最新研究进展进行了综述。首先,对半监督学习的研究现状和分类进行了概述,并将生成式半监督学习、半监督SVM、基于图的半监督学习和协同训练这4种分类方法进行了对比;其次,针对半监督学习的聚类进行了详细的描述,并对4种典型半监督聚类算法(Cop-Kmeans算法、LCop-Kmeans算法、Seeded-Kmeans算法和SC-Kmeans算法)的算法思想进行了分析和总结,同时对这4种算法的优缺点进行了评价;然后,按照基于约束的半监督聚类和基于距离的半监督聚类两种情况,分别对半监督聚类的研究现状进行了阐述;最后,探讨了半监督聚类在生物信息学、图像分割以及计算机其他领域内的应用以及未来的研究方向。文中旨在使初学者能够快速了解半监督聚类的进展,理解典型的算法思想,并在之后的实际应用中能起到一定的指导作用。 展开更多
关键词 监督学习 聚类 成对约束 标签 监督聚类 机器学习
在线阅读 免费下载
一种基于伪标签的半监督少样本学习模型 预览
3
作者 余游 冯林 +1 位作者 王格格 徐其凤 《电子学报》 EI CAS CSCD 北大核心 2019年第11期2284-2291,共8页
如何将带有大量标记数据的源域知识模型迁移至带有少量标记数据的目标域是少样本学习研究领域的热点问题.针对现有的少样本学习算法在源域数据与目标域数据的特征分布差异较大时存在的泛化能力较弱的问题,提出一种基于伪标签的半监督少... 如何将带有大量标记数据的源域知识模型迁移至带有少量标记数据的目标域是少样本学习研究领域的热点问题.针对现有的少样本学习算法在源域数据与目标域数据的特征分布差异较大时存在的泛化能力较弱的问题,提出一种基于伪标签的半监督少样本学习模型FSLSS(Few-Shot Learning based on Semi-Supervised).首先,利用pytorch深度学习框架建立一个关系型深度学习网络,并使用源域数据对网络进行预训练;然后,使用此网络对目标域数据进行分类预测,将分类概率最大的类标签作为数据的伪标签;最后,利用目标域的伪标签数据和源域的真实标签数据对网络进行混合训练,并重复伪标签标记与混合训练过程.实验结果表明,相对于现有主流少样本学习算法,FSLSS模型有更好的泛化能力及知识迁移效果. 展开更多
关键词 少样本学习 监督学习 伪标签 迁移学习
在线阅读 下载PDF
结合深度学习和半监督学习的遥感影像分类进展
4
作者 谭琨 王雪 杜培军 《中国图象图形学报》 CSCD 北大核心 2019年第11期1823-1841,共19页
本文以结合深度学习的遥感影像特征提取和不充足样本下地物识别与分类作为出发点,对2017-2019年用于遥感图像处理中小样本训练的深度学习方法进行归类总结,介绍如何结合深度学习技术解决遥感影像在样本不充分情况下的有效训练问题,从深... 本文以结合深度学习的遥感影像特征提取和不充足样本下地物识别与分类作为出发点,对2017-2019年用于遥感图像处理中小样本训练的深度学习方法进行归类总结,介绍如何结合深度学习技术解决遥感影像在样本不充分情况下的有效训练问题,从深度生成模型、迁移学习以及一些高效特征提取网络3个方面进行全面剖析。首先,探讨了以GAN(generative adversarial network)和VAE(variational autoencoder)及其衍生结构在遥感技术中分类、变化检测上的应用;然后,在基于知识复用的辅助训练策略--迁移学习中主要从基于网络的迁移和基于数据结构的迁移两大类应用展开讨论;最后探讨了结合半监督学习和主动学习等思想的深度学习算法以及一些新颖的网络结构的应用。虽然深度学习在遥感技术领域发挥了极大的优势,性能也普遍超过了浅层的学习器,但结合物理模型的分析和高性能的实用性遥感应用仍需进一步发展与研究。 展开更多
关键词 遥感影像分类 深度学习 深度生成模型 监督学习 迁移学习
半监督属性网络表示学习方法 预览
5
作者 张璞 柴变芳 +1 位作者 张静 李文斌 《计算机工程与应用》 CSCD 北大核心 2019年第12期117-123,144共8页
网络表示学习是一个重要的研究课题,其目的是将高维的属性网络表示为低维稠密的向量,为下一步任务提供有效特征表示。最近提出的属性网络表示学习模型SNE(Social Network Embedding)同时使用网络结构与属性信息学习网络节点表示,但该模... 网络表示学习是一个重要的研究课题,其目的是将高维的属性网络表示为低维稠密的向量,为下一步任务提供有效特征表示。最近提出的属性网络表示学习模型SNE(Social Network Embedding)同时使用网络结构与属性信息学习网络节点表示,但该模型属于无监督模型,不能充分利用一些容易获取的先验信息来提高所学特征表示的质量。基于上述考虑提出了一种半监督属性网络表示学习方法SSNE(Semi-supervised Social Network Embedding),该方法以属性网络和少量节点先验作为前馈神经网络输入,经过多个隐层非线性变换,在输出层通过保持网络链接结构和少量节点先验,学习最优化的节点表示。在四个真实属性网络和两个人工属性网络上,同现有主流方法进行对比,结果表明本方法学到的表示,在聚类和分类任务上具有较好的性能。 展开更多
关键词 属性网络 监督学习 表示学习 聚类
在线阅读 下载PDF
基于多视图半监督学习的人体行为识别 预览
6
作者 唐超 王文剑 +2 位作者 王晓峰 张琛 邹乐 《模式识别与人工智能》 CSCD 北大核心 2019年第4期376-384,共9页
由于人的行为在本质上的复杂性,单一行为特征视图缺乏全面分析人类行为的能力。文中提出基于多视图半监督学习的人体行为识别方法。首先,提出3种不同模态视图数据,用于表征人体动作,即基于RGB模态数据的傅立叶描述子特征视图、基于深度... 由于人的行为在本质上的复杂性,单一行为特征视图缺乏全面分析人类行为的能力。文中提出基于多视图半监督学习的人体行为识别方法。首先,提出3种不同模态视图数据,用于表征人体动作,即基于RGB模态数据的傅立叶描述子特征视图、基于深度模态数据的时空兴趣点特征视图和基于关节模态数据的关节点投影分布特征视图。然后,使用多视图半监督学习框架建模,充分利用不同视图提供的互补信息,确保基于少量标记和大量未标记数据半监督学习取得更好的分类精度。最后,利用分类器级融合技术并结合3种视图的预测能力,同时有效解决未标记样本置信度评估问题。在公开的人体行为识别数据集上实验表明,采用多个动作特征视图融合的特征表示方法的判别力优于单个动作特征视图,取得有效的人体行为识别性能。 展开更多
关键词 人体行为识别 多视图学习 监督学习 动作特征 KINECT 传感器
在线阅读 下载PDF
基于半监督迁移学习SVM的多标签分类算法 预览
7
作者 李程文 杨念 谭建平 《江苏科技信息》 2019年第32期44-46,共3页
传统的支持向量机分类模型只有在利用大量已标注数据进行训练才能获得较高精度。在现实研究中,实际产生的数据类型种类繁多,有结构数据和非结构数据等,但都有一个共同特点,大多具有多个标签,因此传统分类算法无法直接应用于多标签分类... 传统的支持向量机分类模型只有在利用大量已标注数据进行训练才能获得较高精度。在现实研究中,实际产生的数据类型种类繁多,有结构数据和非结构数据等,但都有一个共同特点,大多具有多个标签,因此传统分类算法无法直接应用于多标签分类。文章提出一种基于迁移学习的分类算法,引入迁移学习解决训练数据充分的问题,这种方法在目标域数据集被标注比较少的情况下有着明显的优势;同时为了在训练分类模型的过程中找出对分类起关键作用的信息可以引入半监督学习。 展开更多
关键词 多标签 迁移学习 监督学习 支持向量机
在线阅读 下载PDF
基于模态分析的机械声信号识别 预览
8
作者 贺文红 《舰船电子工程》 2019年第11期207-212,共6页
论文在一维信号处理的框架下,结合语音识别和机械声音信号处理技术,提取了机械声信号本征模态中的梅尔倒谱特征,并使用半监督模糊粗糙拉普拉斯特征映射对该二级高维特征进行流行降维以及类别区分以得到更深度的特征,最后利用该特征,构... 论文在一维信号处理的框架下,结合语音识别和机械声音信号处理技术,提取了机械声信号本征模态中的梅尔倒谱特征,并使用半监督模糊粗糙拉普拉斯特征映射对该二级高维特征进行流行降维以及类别区分以得到更深度的特征,最后利用该特征,构建有效分类器,从而实现对蕴涵了机械转速信息的机械声音信号的高精度识别和分类。 展开更多
关键词 监督学习 流行学习 梅尔倒谱 模糊C均值
在线阅读 下载PDF
基于全连接神经网络的雷达目标航迹识别 预览
9
作者 冯诀宵 樊玉琦 《东北师大学报:自然科学版》 CAS 北大核心 2019年第3期59-65,共7页
在真实雷达数据上模拟生成的点迹数据集,利用深度学习中的生成对抗学习的思想,构建基于全连接神经网络的生成对抗网络(GANs,Generative Adversarial Networks)模型,并引入半监督学习方式,利用少量标签数据实现雷达对抗中目标航迹的有效... 在真实雷达数据上模拟生成的点迹数据集,利用深度学习中的生成对抗学习的思想,构建基于全连接神经网络的生成对抗网络(GANs,Generative Adversarial Networks)模型,并引入半监督学习方式,利用少量标签数据实现雷达对抗中目标航迹的有效识别.实验表明,相比于传统的SVM和CNN分类模型,所构建的方法具有明显的性能优势. 展开更多
关键词 雷达检测 雷达目标识别 深度学习 生成对抗网络 监督学习
在线阅读 下载PDF
基于用户关联度的半监督情感分析模型 预览
10
作者 金志刚 杨洋 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2019年第5期50-56,共7页
随着信息技术与社交媒体的不断发展,用户情感分析在舆情监控、信息预测、产品评价上发挥着越来越重要的作用.然而,监督学习手工标签获取困难,无监督学习缺少标签的引导,因此本文基于社会学理论建立了半监督的情感分析模型,该模型主要分... 随着信息技术与社交媒体的不断发展,用户情感分析在舆情监控、信息预测、产品评价上发挥着越来越重要的作用.然而,监督学习手工标签获取困难,无监督学习缺少标签的引导,因此本文基于社会学理论建立了半监督的情感分析模型,该模型主要分为标签添加和情感分析两部分.标签添加部分首先基于情感一致性和情感传染性两种被认可的社会学理论建立UR-S模型,然后通过用户关联度和文本相似度进行改进,建立TRS-SAT模型,增加标签数量.情感分析部分将TRS-SAT模型与卷积神经网络结合,通过卷积神经网络挖掘特征集合与情感分析标签之间的深层次联系,构建半监督学习模型改善情感分析性能.实验表明,本文提出的基于用户关联度和深度学习的半监督情感分析模型,与半监督的支持向量机模型相比,准确率、召回率、F值分别提升11.40%、5.90%、8.65%;与卷积神经网络模型相比,分别提升4.12%、4.17%、4.14%,均有较好的表现.由此证明,该模型能够为舆情分析与用户决策提供良好的理论基础,具有创新性和实用性. 展开更多
关键词 用户关联度 监督学习 深度学习 卷积神经网络 情感分析 文本相似度
在线阅读 免费下载
一种基于正则化判别分析的迁移学习算法 预览
11
作者 王莉莉 冯其帅 +1 位作者 陈德运 杨海陆 《哈尔滨理工大学学报》 CAS 北大核心 2019年第2期89-95,共7页
针对大多数基于实例的迁移学习方法容易产生分布参数估计困难和泛化效果差的问题,提出一种正则化判别迁移学习算法。依据判别分析和半监督学习理论,采用核方法和正则化方法,研究了基于正则化的高斯核半监督判别分析方法,以构造修正嵌入... 针对大多数基于实例的迁移学习方法容易产生分布参数估计困难和泛化效果差的问题,提出一种正则化判别迁移学习算法。依据判别分析和半监督学习理论,采用核方法和正则化方法,研究了基于正则化的高斯核半监督判别分析方法,以构造修正嵌入空间的方式进行样本迁移。一方面,在映射空间中筛选样本可克服估计分布参数的困难;另一方面,引入伪标记数据和定义距离函数可避免过拟合问题。文本和非文本数据集上的实验结果验证了所提算法能够有效提高迁移的正确率及学习模型的泛化能力。 展开更多
关键词 迁移学习 判别分析 正则化 监督学习
在线阅读 下载PDF
基于编码器-解码器的半监督图像语义分割 预览
12
作者 刘贝贝 华蓓 《计算机系统应用》 2019年第11期182-187,共6页
基于深度卷积神经网络的图像语义分割方法需要大量像素级标注的训练数据,但标注的过程费时又费力.本文基于生成对抗网络提出一种编码-解码结构的半监督图像语义分割方法,其中编码器-解码器模块作为生成器,整个网络通过耦合标准多分类交... 基于深度卷积神经网络的图像语义分割方法需要大量像素级标注的训练数据,但标注的过程费时又费力.本文基于生成对抗网络提出一种编码-解码结构的半监督图像语义分割方法,其中编码器-解码器模块作为生成器,整个网络通过耦合标准多分类交叉熵损失和对抗损失进行训练.为充分利用浅层网络包含的丰富的语义信息,本文将编码器中不同尺度的特征输入到分类器,并将得到的不同粒度的分类结果融合,进而优化目标边界.此外,鉴别器通过发现无标签数据分割结果中的可信区域,以此提供额外的监督信号,来实现半监督学习.在PASCAL VOC2012和Cityscapes上的实验表明,本文提出的方法优于现有的半监督图像语义分割方法. 展开更多
关键词 图像语义分割 编码器-解码器 深度学习 生成对抗网络 监督学习
在线阅读 下载PDF
基于半监督极限学习机的精神负荷分类 预览
13
作者 李建荣 张建华 +1 位作者 夏家骏 陈朋 《华东理工大学学报:自然科学版》 CAS CSCD 北大核心 2019年第1期110-118,共9页
实时操作员的精神负荷(Mental Workload,MWL)监测系统对于自适应操作/辅助系统的设计和开发至关重要。虽然基于数据驱动的方法在MWL识别上已经表现出了较好的性能,但是这些方法难以获取大量的标签生理数据。本文比较了两种不同的特征提... 实时操作员的精神负荷(Mental Workload,MWL)监测系统对于自适应操作/辅助系统的设计和开发至关重要。虽然基于数据驱动的方法在MWL识别上已经表现出了较好的性能,但是这些方法难以获取大量的标签生理数据。本文比较了两种不同的特征提取方法:小波包变换和希尔伯特-黄变换的效果,试图将半监督极限学习机(Semi-Supervised Extreme Learning Machine,SS-ELM)应用于仅需要少量标签生理数据的操作人员精神负荷分类。实际数据分析结果表明,SS-ELM可以有效提高MWL模式分类的准确性和效率。由于无标签训练数据可以以较少的额外资源从操作员的自然操作中收集,所以利用无标签数据的半监督方法可以在时间和成本上提高模型开发的效率。 展开更多
关键词 精神负荷 生理数据 特征提取 监督学习 极限学习
在线阅读 下载PDF
一种半监督多流形识别算法
14
作者 高小方 贾丽娜 《山西大学学报:自然科学版》 CAS 北大核心 2019年第4期824-832,共9页
半监督学习方法在多流形学习领域的应用越来越广泛,文章提出了一种基于MPPCA模型的半监督多流形识别算法M2SMPPCA。该算法首先通过MPPCA模型将原始数据集划分成m个"局部数据块",再根据标签信息对这些数据块进行进一步的分解,... 半监督学习方法在多流形学习领域的应用越来越广泛,文章提出了一种基于MPPCA模型的半监督多流形识别算法M2SMPPCA。该算法首先通过MPPCA模型将原始数据集划分成m个"局部数据块",再根据标签信息对这些数据块进行进一步的分解,使每一个数据块中的标签信息一致;然后利用切空间偏差构造能反映出数据点之间局部几何特性的相似图,并通过谱聚类实现多流形的识别;最后利用共协矩阵集成多次分解结果,提高了子流形分解结果的鲁棒性,得到最终的子流形。实验结果表明,该算法在人造数据和实际的高维图像数据上都能有效地分解开相交多流形数据,相较于其他算法极大地提高了分解精度。 展开更多
关键词 流形学习 多流形 监督学习 MPPCA 切空间
主动学习与半监督技术相结合的海冰图像分类 预览
15
作者 韩彦岭 李鹏 +2 位作者 张云 徐利军 王静 《遥感信息》 CSCD 北大核心 2019年第2期15-22,共8页
针对海冰遥感图像分类问题中标签样本获取困难、标注成本较高导致海冰分类精度难以提高的问题,提出了一种主动学习与半监督学习相结合的方式用于海冰分类。首先,利用基于不确定性准则和多样性准则进行主动学习方法,选择一批最具信息量... 针对海冰遥感图像分类问题中标签样本获取困难、标注成本较高导致海冰分类精度难以提高的问题,提出了一种主动学习与半监督学习相结合的方式用于海冰分类。首先,利用基于不确定性准则和多样性准则进行主动学习方法,选择一批最具信息量的标签样本建立标签样本集;其次,充分利用大量的未标签样本信息,并融合主动学习采样的思想选出部分具有代表性且分布在支持向量周边的半标签样本,建立半监督分类模型;最后,将主动学习方法和直推式支持向量机相结合构建分类模型实现海冰图像分类。实验结果表明,相对于其他方法,该方法在只有少量标签样本的情况下,可以获得更高的分类精度,该方式可有效解决遥感海冰分类问题。 展开更多
关键词 海冰 主动学习 监督学习 直推式支持向量机 分类
在线阅读 下载PDF
鲁棒的半监督多标签特征选择方法 预览 被引量:1
16
作者 严菲 王晓栋 《智能系统学报》 CSCD 北大核心 2019年第4期812-819,共8页
针对现有的半监督多标签特征选择方法利用l2-范数建立谱图易受到噪声影响的问题,文中提出一种鲁棒的半监督多标签特征选择方法,利用全局线性回归函数建立多标签特征选择模型,结合l1图获取局部描述信息提高模型准确度,引入l2,1约束提升... 针对现有的半监督多标签特征选择方法利用l2-范数建立谱图易受到噪声影响的问题,文中提出一种鲁棒的半监督多标签特征选择方法,利用全局线性回归函数建立多标签特征选择模型,结合l1图获取局部描述信息提高模型准确度,引入l2,1约束提升特征之间可区分度和回归分析的稳定性,避免噪声干扰。在4种开源数据集上借助多种性能评价标准验证所提出方法,结果表明:本文方法能有效提高分类模型的准确性和对外界噪声的抗干扰性。 展开更多
关键词 特征选择 监督学习 多标签学习 l1范式图 线性回归 l2 1范数 鲁棒 分类 聚类
在线阅读 下载PDF
基于拉普拉斯回归主动学习的大数据流分类算法 预览
17
作者 杜恒 杨俊成 《计算机应用与软件》 北大核心 2019年第12期273-281,共9页
实时数据流中标记样本所占比例较小,并且存在大量的噪声数据和冗余数据,导致数据流的实时分类准确率较低。针对这种情况,提出基于拉普拉斯回归主动学习的大数据流分类算法。为分类器设计相对支持度差异函数作为分类的决策方法,通过阈值... 实时数据流中标记样本所占比例较小,并且存在大量的噪声数据和冗余数据,导致数据流的实时分类准确率较低。针对这种情况,提出基于拉普拉斯回归主动学习的大数据流分类算法。为分类器设计相对支持度差异函数作为分类的决策方法,通过阈值判断当前数据流的标记样本量。设计基于约束规则的半监督主动学习算法,从无标记样本集选择信息量最丰富的样本。采用拉普拉斯正则最小二乘回归模型作为半监督学习的回归模型,迭代地扩展数据流的标记样本量。仿真结果表明,该算法有效地提高了数据流的分类准确率,并且满足实时性的需求。 展开更多
关键词 大数据 实时数据流 拉普拉斯正则最小二乘 分类算法 监督学习 主动学习
在线阅读 下载PDF
噪声可容忍的标记组合半监督学习算法 预览
18
作者 林金钏 艾浩军 《计算机工程》 CAS CSCD 北大核心 2019年第4期157-162,168共7页
针对传统机器学习方法在完成分类任务时多数存在人工标记成本较高、泛化能力较弱的问题,提出一种标记组合半监督学习算法。基于集成学习的思想,利用有标记数据训练多个弱模型并进行组合,增强模型的泛化能力。对无标记数据进行预测,生成... 针对传统机器学习方法在完成分类任务时多数存在人工标记成本较高、泛化能力较弱的问题,提出一种标记组合半监督学习算法。基于集成学习的思想,利用有标记数据训练多个弱模型并进行组合,增强模型的泛化能力。对无标记数据进行预测,生成有噪声的标记并组合建模。在风险最小化的框架下,使模型收敛达到最优。实验结果表明,在2种有监督场景下与现有的支持向量机、分类与回归树、神经网络等算法相比,该算法具有较优的泛化能力。 展开更多
关键词 监督学习 集成学习 风险最小化 梯度下降 损失函数
在线阅读 下载PDF
基于非线性Logistic模型的改进UDEED算法 预览
19
作者 庄立纯 张正军 +1 位作者 张乃今 李君娣 《计算机工程》 CAS CSCD 北大核心 2019年第7期208-211,共4页
针对UDEED算法中线性Logistic模型分类预测准确率较低的问题,基于泰勒展开式,提出一种多项式核的非线性Logistic模型改进算法。研究非线性Logistic模型的核函数参数估计方法,更新损失函数的计算规则,并利用梯度下降法求解改进UDEED模型... 针对UDEED算法中线性Logistic模型分类预测准确率较低的问题,基于泰勒展开式,提出一种多项式核的非线性Logistic模型改进算法。研究非线性Logistic模型的核函数参数估计方法,更新损失函数的计算规则,并利用梯度下降法求解改进UDEED模型,实现数据集的分类预测。实验结果表明,与UDEED算法相比,改进算法提高了分类预测的准确率。 展开更多
关键词 UDEED算法 非线性Logistic模型 监督学习 无标签数据 梯度下降
在线阅读 下载PDF
分支定界半监督SVM在油层识别中的应用 预览
20
作者 贺紫平 夏克文 +1 位作者 潘用科 王莉 《重庆邮电大学学报:自然科学版》 CSCD 北大核心 2019年第4期563-570,共8页
为解决油层识别中存在的获得有标记数据的代价过高,有标记数据稀少的问题,提出一种新的基于分支定界的半监督支持向量机(branch and bound for semi-supervised support vector machine,BBS3VM)的油层识别方法。此方法主要将半监督学习(... 为解决油层识别中存在的获得有标记数据的代价过高,有标记数据稀少的问题,提出一种新的基于分支定界的半监督支持向量机(branch and bound for semi-supervised support vector machine,BBS3VM)的油层识别方法。此方法主要将半监督学习(semi-supervised learning,SSL)和分支定界的思想引入到支持向量机(support vector machine,SVM)分类算法中。通过半监督学习的思想,使用大量未标记的样本来改善学习性能,利用分支定界算法提高半监督支持向量机(semi-supervised support vector machine,S3VM)算法的分类精度,将此改进算法应用于测井数据挖掘中的油层识别。经过对某油田的实际测井资料进行处理,实验结果表明,半监督油层识别方法要优于传统的S3VM分类算法,识别率更高,分类效果更显著,与全监督的SVM算法相比较,得到相差不大的分类精度的同时,速度更快。 展开更多
关键词 油层识别 监督学习 支持向量机 分支定界
在线阅读 免费下载
上一页 1 2 40 下一页 到第
使用帮助 返回顶部 意见反馈