The population characteristics of distylous species are highly sensitive to stochastic natural selection pressure.Therefore,populations growing under different environmental conditions may vary in floral morph ratios,...The population characteristics of distylous species are highly sensitive to stochastic natural selection pressure.Therefore,populations growing under different environmental conditions may vary in floral morph ratios,potentially affecting female fitness and leading to inbreeding depression.However,the variation in offspring quality among populations as a result of inbreeding depression is poorly understood in distylous species.This study investigates variations in plant density,seed mass,seed viabilityfemale fitness,and post-dispersal inbreeding depression in both sexual morphs(long-styled and shortstyled plants)of the distylous Primula nivalis that were subjected to different pollination treatments along an elevational gradient from 1657 to 2704 m a.s.l.Population characteristics(morph plant density and ratio)and fruit set were significantly affected by sexual morph and elevation.Plant density and fruitset frequencies were lower for short-styled than for long-styled plants at 2704 m a.s.l.The seeds from the cross-pollinated flowers of both morphs were higher in quality than those of self-pollinated flowers.The female fitness of seeds from cross-pollinated flowers of both morphs was higher than that of seeds from open-pollinated and self-pollinated flowers.The female fitness of seeds from long-styled flowers was higher than that of seeds from short-styled flowers at all elevations.Inbreeding depression increased with elevation among plants with short-styled flowers but not among those with long-styled flowers.Variation in the elevation-dependent mating system might influence female fitness and affect inbreeding depression in both floral morphs.In conclusion,the low quality of seeds from short-styled flowers at high elevations might decrease short-styled flower frequency,affecting population characteristics.展开更多
In this work, we investigate suppressing mode instability in detail by varying the seed power in a large mode area all-fiber amplifier with a fiber core diameter of 25 μm. The transverse mode instability(TMI) thresho...In this work, we investigate suppressing mode instability in detail by varying the seed power in a large mode area all-fiber amplifier with a fiber core diameter of 25 μm. The transverse mode instability(TMI) thresholds are systematically measured for different seed power. Our experimental results reveal that increasing the seed power has a positive influence on enhancing the output power before the TMI effect appears, and finally the TMI threshold is approximately doubled from1030 W to 2280 W when the seed power is increased from 27 W to 875 W. Almost 84.7% slope efficiency is reached with different seed power before the TMI threshold power. During our operation, we also find that in this type of LMA fiber the beam quality of the amplifier is degraded gradually instead of a sudden change as the pump power increases.展开更多
基金supported in part by the National Natural Science Foundation of China(NSFC 31400279,31860121)Funded by the Scientific Research Program of the Higher Education Institution of Xinjiang(XJEDU2016I042)+1 种基金High-level Scientific Research Foundation of Kashi University(GCCZK-004)China.
文摘The population characteristics of distylous species are highly sensitive to stochastic natural selection pressure.Therefore,populations growing under different environmental conditions may vary in floral morph ratios,potentially affecting female fitness and leading to inbreeding depression.However,the variation in offspring quality among populations as a result of inbreeding depression is poorly understood in distylous species.This study investigates variations in plant density,seed mass,seed viabilityfemale fitness,and post-dispersal inbreeding depression in both sexual morphs(long-styled and shortstyled plants)of the distylous Primula nivalis that were subjected to different pollination treatments along an elevational gradient from 1657 to 2704 m a.s.l.Population characteristics(morph plant density and ratio)and fruit set were significantly affected by sexual morph and elevation.Plant density and fruitset frequencies were lower for short-styled than for long-styled plants at 2704 m a.s.l.The seeds from the cross-pollinated flowers of both morphs were higher in quality than those of self-pollinated flowers.The female fitness of seeds from cross-pollinated flowers of both morphs was higher than that of seeds from open-pollinated and self-pollinated flowers.The female fitness of seeds from long-styled flowers was higher than that of seeds from short-styled flowers at all elevations.Inbreeding depression increased with elevation among plants with short-styled flowers but not among those with long-styled flowers.Variation in the elevation-dependent mating system might influence female fitness and affect inbreeding depression in both floral morphs.In conclusion,the low quality of seeds from short-styled flowers at high elevations might decrease short-styled flower frequency,affecting population characteristics.
基金the National Natural Science Foundation of China(Grant Nos.61735007 and 61505260).
文摘In this work, we investigate suppressing mode instability in detail by varying the seed power in a large mode area all-fiber amplifier with a fiber core diameter of 25 μm. The transverse mode instability(TMI) thresholds are systematically measured for different seed power. Our experimental results reveal that increasing the seed power has a positive influence on enhancing the output power before the TMI effect appears, and finally the TMI threshold is approximately doubled from1030 W to 2280 W when the seed power is increased from 27 W to 875 W. Almost 84.7% slope efficiency is reached with different seed power before the TMI threshold power. During our operation, we also find that in this type of LMA fiber the beam quality of the amplifier is degraded gradually instead of a sudden change as the pump power increases.