The secondary flow downstream of a triple elbow layout was studied experimentally and numerically to visualize the flow behavior under swirling inlet flow conditions. The inlet swirling condition was generated by a sw...The secondary flow downstream of a triple elbow layout was studied experimentally and numerically to visualize the flow behavior under swirling inlet flow conditions. The inlet swirling condition was generated by a swirl generator, consisting of a rotary pipe and honeycomb assembly. The experiments were carried out in turbulent water flow condition at Reynolds number Re = 1 × 104 and inlet swirl intensity S = 1. Ultrasonic measurements were taken at four locations downstream of the third elbow. The two-dimensional velocity field of the flow field was measured using the phased array ultrasonic velocity profiler technique to evaluate the flow field with separation. Furthermore, a numerical simulation was performed and its results were compared with the experimental data. The numerical result was obtained by solving three-dimensional, Reynolds-averaged Navier-Stokes equations with the renormalization group k-ε turbulence model. The experimental results confirmed that the swirling flow condition modified the size of the separation region downstream of the third elbow. A qualitative comparison between the experimental and CFD simulation results of the averaged velocity field downstream of the third elbow showed similar tendency on reverse flow.展开更多
The mixing of two or more components belongs to the category of the most common unit operations, both in technology and in nature. One particular version is homogenization(blending), the effectivity of which is strong...The mixing of two or more components belongs to the category of the most common unit operations, both in technology and in nature. One particular version is homogenization(blending), the effectivity of which is strongly related to the blending time. Among many differentiated individual solutions of mixing systems used in blenders, one should distinguish the class of agitators with diffusers. An analysis of the character of the velocity field during a blending chamber operation leads to the conclusion that it would be of avail to outfit a straight diffuser with different setups of elbows. In consequence, the vertical direction of the inflowing fluid stream would be changed into the horizontal direction of the outflowing stream, which should intensify the blending process. The concept has been verified experimentally, making use of the tracer methodology. The obtained results confirmed the theoretical conclusion that the blending time for the swirling-diffuser was shorter than for the classical straight one.展开更多
An electrically activated underwater suction device is designed to form an amazing amount of negative pressure by generating water swirling flow,which can make underwater wall-climbing robot stick to the wall surface ...An electrically activated underwater suction device is designed to form an amazing amount of negative pressure by generating water swirling flow,which can make underwater wall-climbing robot stick to the wall surface allowing a ground clearance.For the purpose of a full understanding of the mechanism of the suction device,a series of experimental tests are carried out and a computational fluid dynamics(CFD)model is established.The results show that the suction force F is consistent between experimental tests and simulations.An insight into the flow phenomena of vortex suction device,including spatial velocity and pressure distribution,is given through numerical simulation analysis.Furthermore,the crucial parameters,i.e.,the rotation speedωand gap clearance h,are studied.Then the relationships of F-ωand F-h are clarified.It reveals that with the increasing of rotation speed,the suction force increases quadratically.And with the increasing of gap clearance,the suction force increases firstly and then decreases,so that a reasonable design interval of gap clearance can be got to obtain the required suction force for the engineering applications.展开更多
The wing tip vortex has a great similarity with the swirling jets.Since these are generated of a simpler and more economic form in a laboratory,it is relevant to determine which the best method is for the generation o...The wing tip vortex has a great similarity with the swirling jets.Since these are generated of a simpler and more economic form in a laboratory,it is relevant to determine which the best method is for the generation of the swirling jet.In this paper,the velocity distribution obtained experimentally with the method of generation here proposed,which consists of the employment of an axial fan without stators,is compared with the velocity distribution of swirling jets generated with three different methods.It is observed that the velocity distribution obtained with the proposed method is similar with one of the methods found in the references,which uses fixed blades guides at the entry of the pipe.The proposed method is suitable for the generation of the swirling jet and it is considered that it is simpler and more economic to use blades fixed guides.展开更多
The characteristics of the acceleration a and its correlation with the vortex core in the swirling flow are analyzed in this paper.The swirling flows of four swirl numbers(Sn=n S 0,0.10,0.20 and 0.36)are simulated by ...The characteristics of the acceleration a and its correlation with the vortex core in the swirling flow are analyzed in this paper.The swirling flows of four swirl numbers(Sn=n S 0,0.10,0.20 and 0.36)are simulated by the direct numerical simulation,and the fluid mass particles from the inlet of the swirling flow are traced as a database for the current study.The correlations of the acceleration a with the vortex identification parameters of R andωare quantified,where R is the parameter of the“Liutex”-method proposed by Prof.Liu,and its early version is“Rortex”.The probability density functions of the included angles of a-R and a-ωare computed,which are used to clarify the geometrical configuration between a and R.The covariance coefficients between a and the parameters of various vortex core criteria(Q,λ2,ΩL,ΩR,ωand R)are computed and their relative levels of correlation are compared.Compared to the velocity,the expectation and the rms of the acceleration magnitudes and its projections on R and the plane perpendicular to R are computed for better explaining the correlation features between a and R.It is found that a and R are always either perpendicular or parallel to each other with the quantized included angles of∠(a,R)=kπ/2,(k=0,1,2).This confirms the role of R which works as the axis of the vortex exclusively.展开更多
Experimental fluidization results were compared for three gas distributors with the same opening ratio but different orifice in clinations (30,45 , and 90 ). Hydrodynamic studies were con ducted with glass beads (diam...Experimental fluidization results were compared for three gas distributors with the same opening ratio but different orifice in clinations (30,45 , and 90 ). Hydrodynamic studies were con ducted with glass beads (diameter 154p.m) to evaluate the impacts of orifice inclination and static bed depth on pressure drop, pressure drop fluctuations, bed expansion, and minimum fluidization velocity. Solids residence time distributions were determined using phosphoresce nt tracer particles (mea n diameter 76 pm), activated by ultraviolet light. The bed pressure drop was higher with the inclined-hole distributors and increased with static bed height. In a shallow bed, the inclined-hole distributors gave less expansion;however, in deep beds, the orifice angle had negligible influence on bed expansion. The minimum fluidization velocity varied with static bed height for the inclined-hole distributors and was higher for steeper angles. The turnover time estimated using bubbling-bed equations matched the experimental results well for vertical mixing. Probes and ports at the walls of the fluidization column reduced the dense-phase downward velocity by up to 40%. The tangential particle velocity was highest for the 30 -hole distributor and decreased with increasing orifice angle. Tangential mixing was described by a dispersion model;the dispersion coefficient for the inclined-hole distributors was approximately twice that for the 90 -hole distributor in a shallow bed.展开更多
Rotor-assembled strand works as a typical tube insert to achieve heat transfer augmentation and scale inhibition in a heat exchanger.In this work, the PIV experiment regarding the flow fields in a circular tube insert...Rotor-assembled strand works as a typical tube insert to achieve heat transfer augmentation and scale inhibition in a heat exchanger.In this work, the PIV experiment regarding the flow fields in a circular tube inserted with rotor-assembled strand was conducted and the flow characteristics on transverse section and longitudinal section were analyzed.The results showed that swirling flow was produced in the tube inserted with rotors and it was particularly strong within the swing diameter of the rotor on the section that contains the rotor;the average turbulence intensity and the radial velocity were improved notably;the velocity vectors on the longitudinal section remained along the direction of a straight line;both the swirling flow and average turbulence intensity were higher for the rotor with three blades than for the rotor with two blades except that the radial velocity was approximate, but they were all reduced by enlarging the lead of the rotor.Characterization of the flow patterns in a circular tube contributes to understanding the heat transfer efficiency and scale inhibition performance of the rotor-assembled strand and provides guidance for its application.展开更多
This letter reports inlet flow disturbance effects on direct numerical simulation of incompressible round jet at Reynolds number 2500.The simulation employs an accurate projection method in which a sixth order biased ...This letter reports inlet flow disturbance effects on direct numerical simulation of incompressible round jet at Reynolds number 2500.The simulation employs an accurate projection method in which a sixth order biased upwind difference scheme is used for spatial discretization of nonlinear convective terms,with a fourth order central difference scheme used in the discretization of the divergence of intermediate velocity.Carefully identifying reveals that the inlet flow disturbance has some influences on the distribution pattern of mean factor of swirling strength intermittency.With the increase of inlet disturbance magnitude jet core cone slightly shortens,observable differences occur in the centerline velocity and its fluctuations,despite the negligible impacts on the least square fitted centerline velocity decay constant(Bu)and distribution parameter(Ku)for velocity profile in self-similar region.展开更多
An experimental investigation was performed to investigate two-dimensional axial velocity field at downstream of the 90°double bend pipe with and without inlet swirling condition. The main objectives are to fi...An experimental investigation was performed to investigate two-dimensional axial velocity field at downstream of the 90°double bend pipe with and without inlet swirling condition. The main objectives are to find separation region and observe the influence of inlet swirling flow on the velocity fluctuation using ultrasound technique. The experiments were carried out in the pipe at Reynolds number Re = 1 × 104. In case of inlet swirling flow condition, a rotary swirler was used as swirling generator, and the swirl number was setup S = 1. The ultrasonic measurements were taken at four downstream locations of the second bend pipe. Phased Array Ultrasonic Velocity Profiler (Phased Array UVP) technique was applied to obtain the two-dimensional velocity of the fluid and the axial and tangential velocity fluctuation. It was found that the secondary reverse flow became smaller at the downstream from the bend when the inlet condition on the first bend was swirling flow. In addition, inlet swirling condition influenced mainly on the tangential velocity fluctuation, and its maximum turbulence intensity was 40%.展开更多
The current work aims to make a foundation for an engineering design of a cyclone gasifier to be able not only to predict its flow field with a suitable accuracy but also to investigate a large number of design altern...The current work aims to make a foundation for an engineering design of a cyclone gasifier to be able not only to predict its flow field with a suitable accuracy but also to investigate a large number of design alternatives with limited computer resources. A good single-phase flow model that can form the basis in an Euler-Lagrange model for multi-phase flow is also necessary?for modelling the reacting flow inside a cyclone gasifier. The present paper provides an objective comparison between several popular turbulence modelling options including standard k-ε and SST with curvature corrections, SSG-RSM and LES Smagorinsky models, for the single-phase flow inside cyclone separators/gasifiers that can serve as a guide for further work on the reacting multi-phase flow inside cyclone gasifiers and similar devices. A detailed comparison between the models and experimental data for the mean velocity and fluctuating parts of the velocity profiles are presented. Furthermore, the capabilities of the turbulence models to capture the physical phenomena present in a cyclone gasifier that?affects the design process are investigated.展开更多
The temperature of flow at the combustor exit is inherently non-uniform and the hot fluid is called hot-streak. An in-house CFD software, NUAA-Turbo, was used to carry out 3D unsteady simulations on the PW-E~3 single-...The temperature of flow at the combustor exit is inherently non-uniform and the hot fluid is called hot-streak. An in-house CFD software, NUAA-Turbo, was used to carry out 3D unsteady simulations on the PW-E~3 single-stage high-pressure turbine. The hot-streak effect based on real stator and combustor counts was approximately evaluated by the contraction/dilatation method on the interface. The unsteady attenuation and migration process of hot-streaks in the turbine passage were well captured. The general performance parameters for different circumferential positions of hot-streaks were relatively consistent. Then, the influences of hot-streaks on blade surface temperature were investigated by comparing results under hot-streak and uniform inflow conditions. Unsteady simulations with combined inlet hot-streak and swirling flow show that the core of a hot-streak migrates to the tip under the influence of a positive swirl, while the phenomenon is just opposite with a negative swirl. Therefore, the heat transfer environment of rotor blades shows great differences with different directions of inlet swirl.展开更多
The study of swirling jet combustor for biomass coal co-firing is of great interest for energy industry. The biomass co-firing can serve as a NOx reduction method as well as the better use of renewable energy source. ...The study of swirling jet combustor for biomass coal co-firing is of great interest for energy industry. The biomass co-firing can serve as a NOx reduction method as well as the better use of renewable energy source. Large eddy simulation (LES) and RANS modelling have been performed with two different burner designs. Usually pulverized coal-biomass mixture enters the furnace along with primary air through primary pipe, and the secondary pipe provides necessary air and mixing for combustion. The improved model has three passages including primary, secondary and middle passage for swirling. The simulations on two geometries have been compared, and the aim is to design a better and improved burner model for better pre-combustion mixing in the biomass co- fired furnace. The results from two-way and three-way geometry have been compared with each other as well as with the results from the furnace model used by Apte and Mahesh [8].展开更多
Study of the Cosmos, at best, is considered a semi-scientific discipline, primarily because the la-boratory for carrying out measurements and tests of theories (the Cosmos) has been largely inac-cessible for centuries...Study of the Cosmos, at best, is considered a semi-scientific discipline, primarily because the la-boratory for carrying out measurements and tests of theories (the Cosmos) has been largely inac-cessible for centuries. The cosmic vista into the yonder, however, continued to fascinate humankind due to its inherent beauty and sheer curiosity. The invention of the optical telescope more than five centuries back, however, led to the opening of observational cosmology as a scientific discipline with firm experimental basis. However, the investigations based on visible light posed obvious limitations for the range of such observational cosmology. The advent of the radio telescope in the first half of the 20th century marked a fundamental new step in the progress of this branch of science. There has been no looking back in the march of knowledge in the discipline since then. A whole new vista was laid bare as a result of this development, leading to the discovery of altogether new celestial objects, such as quasars and pulsars and still newer galaxies. The parallel progress of the physics of fundamental constituents of the material world and their interactions led to an interesting merger of these two branches of physical sciences, yielding absolutely astounding knowledge of the nature and evolution of the Universe. New concepts of dark energy and dark matter thought to constitute the dominant share of the Universe were brought to light as a result of these new observations and theoretical ideas. This brief article aims to provide an overview of these exciting developments in the field of cosmology and the associated physics.展开更多
文摘The secondary flow downstream of a triple elbow layout was studied experimentally and numerically to visualize the flow behavior under swirling inlet flow conditions. The inlet swirling condition was generated by a swirl generator, consisting of a rotary pipe and honeycomb assembly. The experiments were carried out in turbulent water flow condition at Reynolds number Re = 1 × 104 and inlet swirl intensity S = 1. Ultrasonic measurements were taken at four locations downstream of the third elbow. The two-dimensional velocity field of the flow field was measured using the phased array ultrasonic velocity profiler technique to evaluate the flow field with separation. Furthermore, a numerical simulation was performed and its results were compared with the experimental data. The numerical result was obtained by solving three-dimensional, Reynolds-averaged Navier-Stokes equations with the renormalization group k-ε turbulence model. The experimental results confirmed that the swirling flow condition modified the size of the separation region downstream of the third elbow. A qualitative comparison between the experimental and CFD simulation results of the averaged velocity field downstream of the third elbow showed similar tendency on reverse flow.
文摘The mixing of two or more components belongs to the category of the most common unit operations, both in technology and in nature. One particular version is homogenization(blending), the effectivity of which is strongly related to the blending time. Among many differentiated individual solutions of mixing systems used in blenders, one should distinguish the class of agitators with diffusers. An analysis of the character of the velocity field during a blending chamber operation leads to the conclusion that it would be of avail to outfit a straight diffuser with different setups of elbows. In consequence, the vertical direction of the inflowing fluid stream would be changed into the horizontal direction of the outflowing stream, which should intensify the blending process. The concept has been verified experimentally, making use of the tracer methodology. The obtained results confirmed the theoretical conclusion that the blending time for the swirling-diffuser was shorter than for the classical straight one.
基金supported by the National Natural Science Foundation of China(Grant No.11672105)the Natural Science Foundation of Hunan Province(Grant No.2016JJ1009)。
文摘An electrically activated underwater suction device is designed to form an amazing amount of negative pressure by generating water swirling flow,which can make underwater wall-climbing robot stick to the wall surface allowing a ground clearance.For the purpose of a full understanding of the mechanism of the suction device,a series of experimental tests are carried out and a computational fluid dynamics(CFD)model is established.The results show that the suction force F is consistent between experimental tests and simulations.An insight into the flow phenomena of vortex suction device,including spatial velocity and pressure distribution,is given through numerical simulation analysis.Furthermore,the crucial parameters,i.e.,the rotation speedωand gap clearance h,are studied.Then the relationships of F-ωand F-h are clarified.It reveals that with the increasing of rotation speed,the suction force increases quadratically.And with the increasing of gap clearance,the suction force increases firstly and then decreases,so that a reasonable design interval of gap clearance can be got to obtain the required suction force for the engineering applications.
文摘The wing tip vortex has a great similarity with the swirling jets.Since these are generated of a simpler and more economic form in a laboratory,it is relevant to determine which the best method is for the generation of the swirling jet.In this paper,the velocity distribution obtained experimentally with the method of generation here proposed,which consists of the employment of an axial fan without stators,is compared with the velocity distribution of swirling jets generated with three different methods.It is observed that the velocity distribution obtained with the proposed method is similar with one of the methods found in the references,which uses fixed blades guides at the entry of the pipe.The proposed method is suitable for the generation of the swirling jet and it is considered that it is simpler and more economic to use blades fixed guides.
基金Project supported by the National Natural Science Foundations of China(Grant No.51576211)the Science Fund for Creative Research Groups of National Natural Science Foundation of China(Grant No.51621062)+1 种基金the National High Technology Research and Development Program of China(863 Program,Grant No.2014AA052701)the Foundation for the Author of National Excellent Doctoral Dissertation of China(FANEDD,Grant No.201438).
文摘The characteristics of the acceleration a and its correlation with the vortex core in the swirling flow are analyzed in this paper.The swirling flows of four swirl numbers(Sn=n S 0,0.10,0.20 and 0.36)are simulated by the direct numerical simulation,and the fluid mass particles from the inlet of the swirling flow are traced as a database for the current study.The correlations of the acceleration a with the vortex identification parameters of R andωare quantified,where R is the parameter of the“Liutex”-method proposed by Prof.Liu,and its early version is“Rortex”.The probability density functions of the included angles of a-R and a-ωare computed,which are used to clarify the geometrical configuration between a and R.The covariance coefficients between a and the parameters of various vortex core criteria(Q,λ2,ΩL,ΩR,ωand R)are computed and their relative levels of correlation are compared.Compared to the velocity,the expectation and the rms of the acceleration magnitudes and its projections on R and the plane perpendicular to R are computed for better explaining the correlation features between a and R.It is found that a and R are always either perpendicular or parallel to each other with the quantized included angles of∠(a,R)=kπ/2,(k=0,1,2).This confirms the role of R which works as the axis of the vortex exclusively.
文摘Experimental fluidization results were compared for three gas distributors with the same opening ratio but different orifice in clinations (30,45 , and 90 ). Hydrodynamic studies were con ducted with glass beads (diameter 154p.m) to evaluate the impacts of orifice inclination and static bed depth on pressure drop, pressure drop fluctuations, bed expansion, and minimum fluidization velocity. Solids residence time distributions were determined using phosphoresce nt tracer particles (mea n diameter 76 pm), activated by ultraviolet light. The bed pressure drop was higher with the inclined-hole distributors and increased with static bed height. In a shallow bed, the inclined-hole distributors gave less expansion;however, in deep beds, the orifice angle had negligible influence on bed expansion. The minimum fluidization velocity varied with static bed height for the inclined-hole distributors and was higher for steeper angles. The turnover time estimated using bubbling-bed equations matched the experimental results well for vertical mixing. Probes and ports at the walls of the fluidization column reduced the dense-phase downward velocity by up to 40%. The tangential particle velocity was highest for the 30 -hole distributor and decreased with increasing orifice angle. Tangential mixing was described by a dispersion model;the dispersion coefficient for the inclined-hole distributors was approximately twice that for the 90 -hole distributor in a shallow bed.
基金National Natural Science Foundation of China (51576012).
文摘Rotor-assembled strand works as a typical tube insert to achieve heat transfer augmentation and scale inhibition in a heat exchanger.In this work, the PIV experiment regarding the flow fields in a circular tube inserted with rotor-assembled strand was conducted and the flow characteristics on transverse section and longitudinal section were analyzed.The results showed that swirling flow was produced in the tube inserted with rotors and it was particularly strong within the swing diameter of the rotor on the section that contains the rotor;the average turbulence intensity and the radial velocity were improved notably;the velocity vectors on the longitudinal section remained along the direction of a straight line;both the swirling flow and average turbulence intensity were higher for the rotor with three blades than for the rotor with two blades except that the radial velocity was approximate, but they were all reduced by enlarging the lead of the rotor.Characterization of the flow patterns in a circular tube contributes to understanding the heat transfer efficiency and scale inhibition performance of the rotor-assembled strand and provides guidance for its application.
基金Authors are grateful to the financial support from the National Natural Science Foundation of China (Nos. U1560207 and U51504057) and the National Key R&D Program of China: Upgrading and Industrialization of Key Basic Material Technology (No. 2017YFB0304400).
文摘This letter reports inlet flow disturbance effects on direct numerical simulation of incompressible round jet at Reynolds number 2500.The simulation employs an accurate projection method in which a sixth order biased upwind difference scheme is used for spatial discretization of nonlinear convective terms,with a fourth order central difference scheme used in the discretization of the divergence of intermediate velocity.Carefully identifying reveals that the inlet flow disturbance has some influences on the distribution pattern of mean factor of swirling strength intermittency.With the increase of inlet disturbance magnitude jet core cone slightly shortens,observable differences occur in the centerline velocity and its fluctuations,despite the negligible impacts on the least square fitted centerline velocity decay constant(Bu)and distribution parameter(Ku)for velocity profile in self-similar region.
文摘An experimental investigation was performed to investigate two-dimensional axial velocity field at downstream of the 90°double bend pipe with and without inlet swirling condition. The main objectives are to find separation region and observe the influence of inlet swirling flow on the velocity fluctuation using ultrasound technique. The experiments were carried out in the pipe at Reynolds number Re = 1 × 104. In case of inlet swirling flow condition, a rotary swirler was used as swirling generator, and the swirl number was setup S = 1. The ultrasonic measurements were taken at four downstream locations of the second bend pipe. Phased Array Ultrasonic Velocity Profiler (Phased Array UVP) technique was applied to obtain the two-dimensional velocity of the fluid and the axial and tangential velocity fluctuation. It was found that the secondary reverse flow became smaller at the downstream from the bend when the inlet condition on the first bend was swirling flow. In addition, inlet swirling condition influenced mainly on the tangential velocity fluctuation, and its maximum turbulence intensity was 40%.
文摘The current work aims to make a foundation for an engineering design of a cyclone gasifier to be able not only to predict its flow field with a suitable accuracy but also to investigate a large number of design alternatives with limited computer resources. A good single-phase flow model that can form the basis in an Euler-Lagrange model for multi-phase flow is also necessary?for modelling the reacting flow inside a cyclone gasifier. The present paper provides an objective comparison between several popular turbulence modelling options including standard k-ε and SST with curvature corrections, SSG-RSM and LES Smagorinsky models, for the single-phase flow inside cyclone separators/gasifiers that can serve as a guide for further work on the reacting multi-phase flow inside cyclone gasifiers and similar devices. A detailed comparison between the models and experimental data for the mean velocity and fluctuating parts of the velocity profiles are presented. Furthermore, the capabilities of the turbulence models to capture the physical phenomena present in a cyclone gasifier that?affects the design process are investigated.
基金supported by the AECC Shenyang Engine Research Institute of China.
文摘The temperature of flow at the combustor exit is inherently non-uniform and the hot fluid is called hot-streak. An in-house CFD software, NUAA-Turbo, was used to carry out 3D unsteady simulations on the PW-E~3 single-stage high-pressure turbine. The hot-streak effect based on real stator and combustor counts was approximately evaluated by the contraction/dilatation method on the interface. The unsteady attenuation and migration process of hot-streaks in the turbine passage were well captured. The general performance parameters for different circumferential positions of hot-streaks were relatively consistent. Then, the influences of hot-streaks on blade surface temperature were investigated by comparing results under hot-streak and uniform inflow conditions. Unsteady simulations with combined inlet hot-streak and swirling flow show that the core of a hot-streak migrates to the tip under the influence of a positive swirl, while the phenomenon is just opposite with a negative swirl. Therefore, the heat transfer environment of rotor blades shows great differences with different directions of inlet swirl.
文摘The study of swirling jet combustor for biomass coal co-firing is of great interest for energy industry. The biomass co-firing can serve as a NOx reduction method as well as the better use of renewable energy source. Large eddy simulation (LES) and RANS modelling have been performed with two different burner designs. Usually pulverized coal-biomass mixture enters the furnace along with primary air through primary pipe, and the secondary pipe provides necessary air and mixing for combustion. The improved model has three passages including primary, secondary and middle passage for swirling. The simulations on two geometries have been compared, and the aim is to design a better and improved burner model for better pre-combustion mixing in the biomass co- fired furnace. The results from two-way and three-way geometry have been compared with each other as well as with the results from the furnace model used by Apte and Mahesh [8].
文摘Study of the Cosmos, at best, is considered a semi-scientific discipline, primarily because the la-boratory for carrying out measurements and tests of theories (the Cosmos) has been largely inac-cessible for centuries. The cosmic vista into the yonder, however, continued to fascinate humankind due to its inherent beauty and sheer curiosity. The invention of the optical telescope more than five centuries back, however, led to the opening of observational cosmology as a scientific discipline with firm experimental basis. However, the investigations based on visible light posed obvious limitations for the range of such observational cosmology. The advent of the radio telescope in the first half of the 20th century marked a fundamental new step in the progress of this branch of science. There has been no looking back in the march of knowledge in the discipline since then. A whole new vista was laid bare as a result of this development, leading to the discovery of altogether new celestial objects, such as quasars and pulsars and still newer galaxies. The parallel progress of the physics of fundamental constituents of the material world and their interactions led to an interesting merger of these two branches of physical sciences, yielding absolutely astounding knowledge of the nature and evolution of the Universe. New concepts of dark energy and dark matter thought to constitute the dominant share of the Universe were brought to light as a result of these new observations and theoretical ideas. This brief article aims to provide an overview of these exciting developments in the field of cosmology and the associated physics.