期刊文献+
共找到1,570篇文章
< 1 2 79 >
每页显示 20 50 100
显隐信息协同的多视角极限学习模糊系统 预览
1
作者 张特 邓赵红 王士同 《计算机科学与探索》 CSCD 北大核心 2019年第3期468-480,共13页
多视角数据正在越来越多地应用于各种建模任务,但当前的多视角模糊系统建模方法,主要集中于实现各个显性视角的合作,还未能充分探讨和利用各视角间共享的隐信息。针对此,对如何引入各个显性视角共享的隐空间信息来实现显隐视角协同的模... 多视角数据正在越来越多地应用于各种建模任务,但当前的多视角模糊系统建模方法,主要集中于实现各个显性视角的合作,还未能充分探讨和利用各视角间共享的隐信息。针对此,对如何引入各个显性视角共享的隐空间信息来实现显隐视角协同的模糊系统建模进行了研究。具体地,基于岭回归极限学习模糊系统(ridge regression extreme learning fuzzy system,RR-EL-FS)模型,引入隐空间信息实现显隐视角协同学习来对RR-EL-FS进行学习,最终开发出具有显隐视角协同功能的岭回归极限学习模糊系统预测模型(ridgeregression extreme learning fuzzy system with cooperation between visible and hidden views,RR-EL-FS-CVH)。该方法较之以往相关的多视角建模方法能更好地利用隐空间的有效信息,从而能够进一步提高受训模型的泛化性能。大量的实验结果亦验证了所提方法的有效性。 展开更多
关键词 显隐视角协同 多视角学习 共享隐空间 模糊系统 极限学习
在线阅读 下载PDF
旋转森林与极限学习相结合的遥感影像分类方法 预览
2
作者 肖东升 鲁恩铭 刘福臻 《遥感信息》 CSCD 北大核心 2019年第3期93-98,共6页
针对旋转森林算法(rotation forest, RF)处理遥感影像分类时容易出现过拟合现象,以及极限学习算法(extreme learning machine, ELM)泛化性能较差问题,提出一种将旋转森林与极限学习相结合(RF-ELM)的影像分类算法。该方法首先用旋转森林... 针对旋转森林算法(rotation forest, RF)处理遥感影像分类时容易出现过拟合现象,以及极限学习算法(extreme learning machine, ELM)泛化性能较差问题,提出一种将旋转森林与极限学习相结合(RF-ELM)的影像分类算法。该方法首先用旋转森林算法对基分类器进行训练,然后利用极限学习算法作为基分类器解决旋转森林中存在的过拟合问题。通过利用Landsat-8遥感影像分别对比RF、ELM、Bag-ELM和RF-ELM进行分类实验。结果表明,所提出的集成方法比RF、ELM单一算法具有更高的分类精度,相比Bag-ELM具有更高泛化能力,有效改善了分类过拟合现象,计算效率也继承了ELM快速运算的特点。 展开更多
关键词 旋转森林 极限学习 算法互补性 集成分类器 影像分类
在线阅读 下载PDF
极限学习脊波过程神经网络及应用 预览
3
作者 刘志刚 许少华 +1 位作者 肖佃师 杜娟 《电子科技大学学报》 EI CAS CSCD 北大核心 2019年第1期110-116,共7页
为提高页岩的岩性识别精度,首先针对测井曲线连续变化、突变频繁的信号特征,利用脊波变换作为过程神经元的激励函数,提出一种脊波过程神经网络模型;其次通过AdaBoost的动态调整机制迭代调整模型和样本集权重,利用多个弱分类器的线性加... 为提高页岩的岩性识别精度,首先针对测井曲线连续变化、突变频繁的信号特征,利用脊波变换作为过程神经元的激励函数,提出一种脊波过程神经网络模型;其次通过AdaBoost的动态调整机制迭代调整模型和样本集权重,利用多个弱分类器的线性加权构建强分类器;最后为提高AdaBoost中的每个脊波过程神经网络模型的学习速度,提出一种基于满秩分解的极限学习算法,通过Moore-Penrose广义逆求解隐层输出权值。仿真实验以A区的B1井和B2井为例进行岩性识别,通过对比分析验证方法的有效性,识别效果优于其他过程神经网络模型,准确率最高可达90%左右。 展开更多
关键词 极限学习 广义逆 岩性识别 过程神经网络 脊波变换
在线阅读 免费下载
一种增量极限过程神经网络的研究及应用
4
作者 杜娟 刘志刚 +1 位作者 许少华 高雅田 《信息与控制》 CSCD 北大核心 2018年第5期553-558,共6页
为提高过程神经网络逼近效率,从模型结构角度出发,提出了一种增量极限过程神经网络模型,根据输出误差在隐层中逐次加入新节点实现结构自增长.首先利用量子衍生萤火虫算法优化新增临时节点输入参数;其次根据新增节点输出正交向量的2范数... 为提高过程神经网络逼近效率,从模型结构角度出发,提出了一种增量极限过程神经网络模型,根据输出误差在隐层中逐次加入新节点实现结构自增长.首先利用量子衍生萤火虫算法优化新增临时节点输入参数;其次根据新增节点输出正交向量的2范数判别相关性;最后固定现有节点参数,通过极限学习理论计算新增节点的输出权值.在仿真实验中,通过与其它过程神经网络对比分析,以Henon时间序列预测和页岩的岩性识别为例验证所提方法的有效性,模型逼近效率和训练速度均有提高. 展开更多
关键词 极限学习 过程神经网络 正交向量 结构自增长 岩性识别
一种混合优化的结构自适应极限过程神经网络及应用
5
作者 刘志刚 许少华 +1 位作者 杜娟 肖佃师 《控制与决策》 CSCD 北大核心 2018年第7期1335-1340,共6页
为解决过程神经网络的隐层结构和训练速度问题,在极限学习机的基础上,提出一种混合优化的结构自适应极限过程神经网络.首先,采用在隐层中逐次增加过程神经元节点直至满足输出误差的方式完成模型结构自适应;然后,为消除冗余节点,提出对... 为解决过程神经网络的隐层结构和训练速度问题,在极限学习机的基础上,提出一种混合优化的结构自适应极限过程神经网络.首先,采用在隐层中逐次增加过程神经元节点直至满足输出误差的方式完成模型结构自适应;然后,为消除冗余节点,提出对新增临时节点输出实施Gram-Schmidt正交化完成相关性判别;最后,构建一种量子衍生布谷鸟算法,对新增节点输入权函数正交基展开系数实施寻优.仿真实验以Mackey-Glass和页岩油TOC预测为例,通过对比分析验证所提出方法的有效性,仿真结果表明所得模型的逼近效率和训练速度有明显提高. 展开更多
关键词 过程神经网络 极限学习 Gram-Schmidt正交化 布谷鸟算法 自适应结构
基于QPSO-ELM的过程神经网络及时间序列预测
6
作者 刘志刚 许少华 +1 位作者 李盼池 冯永强 《控制工程》 CSCD 北大核心 2018年第3期477-483,共7页
过程神经网络模型结构复杂,正交基展开后学习参数多,传统梯度下降存在对初值敏感、计算复杂等问题,将过程神经网络进行正交基展开化简,在结构上转化为统神经网络,利用极限学习作为过程神经元网络的学习算法。学习过程中摒弃梯度下... 过程神经网络模型结构复杂,正交基展开后学习参数多,传统梯度下降存在对初值敏感、计算复杂等问题,将过程神经网络进行正交基展开化简,在结构上转化为统神经网络,利用极限学习作为过程神经元网络的学习算法。学习过程中摒弃梯度下降算法的迭代调整策略,采用Moore-Penrose广义逆计算输出权值,同时为弥补该算法由于随机赋值造成的模型稳定性差的缺点,提出一种双链结构的量子粒子群算法,优化极限学习过程中随机赋值参数。二者结合使用,使模型在稳定性、训练误差方面都得到了一定程度的提高。仿真实验以Mackey—Glass时间序列和太阳黑子预测为例验证了算法的有效性。 展开更多
关键词 过程神经元网络 极限学习 量子粒子群 网络训练
基于ELM和连续过程神经网络的抽油机工况诊断 预览
7
作者 刘志刚 许少华 李盼池 《计算机工程与科学》 CSCD 北大核心 2017年第10期1934-1940,共7页
普通神经网络进行抽油机工况诊断时存在诊断精度偏低的问题,提出选用连续过程神经元网络作为诊断模型,特征输入选取能直接反映示功图几何形态特征的位移和载荷两种连续信号。为提高模型学习速度,提出过程神经网络的极限学习算法,将训练... 普通神经网络进行抽油机工况诊断时存在诊断精度偏低的问题,提出选用连续过程神经元网络作为诊断模型,特征输入选取能直接反映示功图几何形态特征的位移和载荷两种连续信号。为提高模型学习速度,提出过程神经网络的极限学习算法,将训练转换为最小二乘问题,根据样本输入计算隐层输出矩阵,使用SVD法求解Moore-Penrose广义逆,最后计算隐层输出权值。通过诊断实验,模型学习速度提升5倍左右,与普通神经网络进行对比,诊断精度提高8个百分点左右,验证了方法的有效性。 展开更多
关键词 工况诊断 过程神经元网络 极限学习 MOORE-PENROSE广义逆 网络训练
在线阅读 下载PDF
基于ELM-PNN算法的第24周太阳黑子预测预报 被引量:3
8
作者 刘志刚 李盼池 许少华 《控制与决策》 EI CSCD 北大核心 2017年第4期642-646,共5页
为了提高太阳黑子预测预报的精度,提出固定型极限学习过程神经网络(FELM-PNN)和增量型极限学习过程神经网络(IELM-PNN)两种学习算法.FELM-PNN的隐层节点数目固定,使用SVD求解隐层输出矩阵的Moore-Penrose广义逆,通过最小二乘法计算... 为了提高太阳黑子预测预报的精度,提出固定型极限学习过程神经网络(FELM-PNN)和增量型极限学习过程神经网络(IELM-PNN)两种学习算法.FELM-PNN的隐层节点数目固定,使用SVD求解隐层输出矩阵的Moore-Penrose广义逆,通过最小二乘法计算隐层输出权值;IELM-PNN逐次增加隐层节点,根据隐层输出矩阵和网络误差计算增加节点的输出权值.通过Henon时间序列预测验证了两种方法的有效性,并实际应用于第24周太阳黑子平滑月均值的中长期预测预报中.实验结果表明,两种方法的预测精度均有一定程度的提高,IELM-PNN的训练收敛性优于FELM-PNN. 展开更多
关键词 过程神经网络 极限学习 网络训练 广义逆 太阳黑子数
基于QPSO和极限学习的离散过程神经网络及学习算法 被引量:5
9
作者 刘志刚 许少华 李盼池 《控制与决策》 EI CSCD 北大核心 2016年第12期2241-2247,共7页
连续过程神经元网络在权函数正交基展开时,基函数个数无法有效确定,因此逼近精度不高.针对该问题,提出一种离散过程神经元网络,使用三次样条数值积分处理离散样本和权值的时域聚合运算.模型训练采用双链量子粒子群完成输入权值的全局寻... 连续过程神经元网络在权函数正交基展开时,基函数个数无法有效确定,因此逼近精度不高.针对该问题,提出一种离散过程神经元网络,使用三次样条数值积分处理离散样本和权值的时域聚合运算.模型训练采用双链量子粒子群完成输入权值的全局寻优,通过量子旋转门和非门完成种群进化.局部使用极限学习,通过Moore-Penrose广义逆计算输出权值.以时间序列预测为例进行仿真实验,结果验证了模型的有效性,且训练收敛能力和逼近能力都有一定程度的提高. 展开更多
关键词 过程神经元网络 极限学习 量子粒子群 MOORE-PENROSE广义逆 网络训练
基于极限学习离散过程神经网络的示功图识别 被引量:2
10
作者 刘志刚 许少华 +1 位作者 李盼池 赵云龙 《信息与控制》 CSCD 北大核心 2016年第5期627-633,共7页
针对传统神经网络进行抽油机示功图识别诊断时受同步瞬时输入限制,不能有效体现连续输入信号的时间累积效应,诊断精度偏低的问题,提出一种极限学习离散过程元网络,模型内部通过三次样条数值积分处理离散样本和权值的时域的聚合运算.模... 针对传统神经网络进行抽油机示功图识别诊断时受同步瞬时输入限制,不能有效体现连续输入信号的时间累积效应,诊断精度偏低的问题,提出一种极限学习离散过程元网络,模型内部通过三次样条数值积分处理离散样本和权值的时域的聚合运算.模型训练算法采用极限学习,将模型训练转化为最小二乘问题,通过利用Moore-Penrose广义逆和隐层输出权值矩阵来计算输出权值,提升模型学习速度.进行示功图识别时,直接将位移和载荷离散时间序列作为模型输入,对常见的5种示功图状态进行识别.实验结果表明,该方法具有较高的识别精度,同时相对于其它过程神经网络模型,学习速度较快. 展开更多
关键词 示功图 离散过程神经元网络 极限学习 MOORE-PENROSE广义逆 网络训练
苹果采摘机器人本体导航系统设计与研究——基于极限学习机与图像处理 预览
11
作者 秦晓明 谷利芬 《农机化研究》 北大核心 2020年第3期235-239,共5页
首先介绍了苹果采摘机器人本体模型,采用图像预处理提取苹果园区路径图像的特征值;然后,基于极限学习机的路径导航模型计算和求解苹果采摘机器人本体的最优导航路径,并利用MatLab软件进行了路径导航仿真试验。试验结果表明:该系统具有... 首先介绍了苹果采摘机器人本体模型,采用图像预处理提取苹果园区路径图像的特征值;然后,基于极限学习机的路径导航模型计算和求解苹果采摘机器人本体的最优导航路径,并利用MatLab软件进行了路径导航仿真试验。试验结果表明:该系统具有很好的避障和路径导航能力,能够有效规划出最短的避障路径,从而达到智能导航的目的,验证了整个系统的可靠性和可行性。 展开更多
关键词 采摘机器人 图像预处理 极限学习机 MATLAB 路径导航
在线阅读 下载PDF
极限学习机前沿进展与趋势 预览 被引量:1
12
作者 徐睿 梁循 +2 位作者 齐金山 李志宇 张树森 《计算机学报》 EI CSCD 北大核心 2019年第7期1640-1670,共31页
极限学习机(Extreme Learning Machine,ELM)作为前馈神经网络学习中一种全新的训练框架,在行为识别、情感识别和故障诊断等方面被广泛应用,引起了各个领域的高度关注和深入研究.ELM最初是针对单隐层前馈神经网络的学习速度而提出的,之... 极限学习机(Extreme Learning Machine,ELM)作为前馈神经网络学习中一种全新的训练框架,在行为识别、情感识别和故障诊断等方面被广泛应用,引起了各个领域的高度关注和深入研究.ELM最初是针对单隐层前馈神经网络的学习速度而提出的,之后又被众多学者扩展到多隐层前馈神经网络中.该算法的核心思想是随机选取网络的输入权值和隐层偏置,在训练过程中保持不变,仅需要优化隐层神经元个数.网络的输出权值则是通过最小化平方损失函数,来求解Moore - Penrose广义逆运算得到最小范数最小二乘解.相比于其它传统的基于梯度的前馈神经网络学习算法,ELM具有实现简单,学习速度极快和人为干预较少等显著优势,已成为当前人工智能领域最热门的研究方向之一.ELM的学习理论表明,当隐层神经元的学习参数独立于训练样本随机生成,只要前馈神经网络的激活函数是非线性分段连续的,就可以逼近任意连续目标函数或分类任务中的任何复杂决策边界.近年来,随机神经元也逐步在越来越多的深度学习中使用,而ELM可以为其提供使用的理论基础.本文首先概述了ELM的发展历程,接着详细阐述了ELM的工作原理.然后对ELM理论和应用的最新研究进展进行了归纳总结,着重讨论并分析了自ELM提出以来的主要学习算法和模型,包括提出的原因、核心思想、求解方法、各自的优缺点以及相关问题.最后,针对当前的研究现状,指出了ELM存在的争议、问题和挑战,并对未来的研究方向和发展趋势进行了展望。 展开更多
关键词 极限学习机 网络结构 正则化 核学习 深度学习 在线学习 并行计算
在线阅读 下载PDF
变形监测数据预报的动态贝叶斯ELM 方法 预览
13
作者 范千 方绪华 +1 位作者 许承权 杨荣华 《测绘学报》 EI CSCD 北大核心 2019年第7期919-925,共7页
贝叶斯极限学习机(BELM)具有充分利用数据先验信息,可以自适应估计模型参数的特点。但在样本数量不断增加时,如果每次都对BELM重新训练将会降低计算效率。针对此问题,本文提出一种动态贝叶斯极限学习机(DBELM)方法以应用于变形监测数据... 贝叶斯极限学习机(BELM)具有充分利用数据先验信息,可以自适应估计模型参数的特点。但在样本数量不断增加时,如果每次都对BELM重新训练将会降低计算效率。针对此问题,本文提出一种动态贝叶斯极限学习机(DBELM)方法以应用于变形监测数据实时预报。该方法以BELM训练的模型参数为初值,根据新增样本信息可对初始模型参数进行动态更新,并从理论上推导了相关计算公式。通过对仿真数据和实际变形数据进行详细分析表明:DBELM方法的预报精度要优于BELM、正则化极限学习机(RELM)、极限学习机(ELM)3种方法。特别是在长期持续预报过程中,其预报性能相对于其余3种方法优势明显。这充分表明了所提方法应用于变形监测数据预报领域具有可行性和有效性。 展开更多
关键词 变形监测 实时预报 极限学习机 动态贝叶斯极限学习机 预报性能
在线阅读 下载PDF
非平衡化标签补全核极限学习机多标签学习 预览
14
作者 程玉胜 赵大卫 +1 位作者 王一宾 裴根生 《电子学报》 EI CAS CSCD 北大核心 2019年第3期719-725,共7页
目前众多的研究者通常直接将标签置信度矩阵作为先验知识直接加入到分类模型中,并没有考虑未标注先验知识对标签集质量的影响.基于此,引入非平衡参数的方法,将先验知识获得的基础置信度矩阵进行非平衡化,从而提出一种非平衡化的标签补... 目前众多的研究者通常直接将标签置信度矩阵作为先验知识直接加入到分类模型中,并没有考虑未标注先验知识对标签集质量的影响.基于此,引入非平衡参数的方法,将先验知识获得的基础置信度矩阵进行非平衡化,从而提出一种非平衡化的标签补全的核极限学习机多标签学习算法(KELM-NeLC):首先使用信息熵计算标签之间的相关关系得到标签置信度矩阵,然后利用非平衡参数方法对基础的标签置信度矩阵进行改进,构建出一个非平衡的标签补全矩阵,最后为了学习获得更加准确的标签置信度矩阵,将非平衡化的标签补全矩阵与核极限学习机进行联合学习,依此解决多标签分类问题.提出的算法在公开的多个基准多标签数据集中的实验结果表明,KELM-NeLC算法较其他对比的多标签学习算法有一定优势,使用统计假设检验进一步说明所提出算法的有效性. 展开更多
关键词 机器学习 多标签学习 标签相关性 信息熵 标签补全 极限学习机
在线阅读 下载PDF
基于深度学习的复杂网络实时Sybil攻击检测算法 预览
15
作者 李扬 王春明 《计算机应用与软件》 北大核心 2019年第7期300-306,共7页
针对复杂网络中Sybil攻击检测速度较慢的问题,提出一种基于深度学习的复杂网络实时Sybil攻击检测方案。从网络中采集数据,提取合适的特征;通过深度学习技术预测网络中的攻击行为。基于多层核极限学习机的深度学习技术包括无监督表示学... 针对复杂网络中Sybil攻击检测速度较慢的问题,提出一种基于深度学习的复杂网络实时Sybil攻击检测方案。从网络中采集数据,提取合适的特征;通过深度学习技术预测网络中的攻击行为。基于多层核极限学习机的深度学习技术包括无监督表示学习与监督特征分类两个阶段。通过低秩逼近法计算近似的经验核映射,代替原极限学习机随机生成的隐层。将经验核映射-自动编码的栈式自编码器作为表示学习,对极限学习机的时间效率与存储成本实现了显著的提高。基于实际社交数据的实验结果表明,该方案有效地降低了Sybil攻击的检测时间,并且保持了较好的检测效果。 展开更多
关键词 表示学习 深度学习 极限学习机 社交网络 网络安全 深度神经网络
在线阅读 下载PDF
基于极限学习机的肉制品质量风险预测研究 预览
16
作者 汪颢懿 卞玉芳 +1 位作者 张瑞芳 王星云 《计算机仿真》 北大核心 2019年第10期413-418,共6页
食品质量风险预警是民生保障中的重大问题,针对目前常用预警方法存在训练时间过长、精确度低等问题,提出了一种基于极限学习机(ELM)的重点食品安全风险预警模型.首先对国家食品安全抽检检测信息系统中肉制品的抽样检验数据进行预处理,... 食品质量风险预警是民生保障中的重大问题,针对目前常用预警方法存在训练时间过长、精确度低等问题,提出了一种基于极限学习机(ELM)的重点食品安全风险预警模型.首先对国家食品安全抽检检测信息系统中肉制品的抽样检验数据进行预处理,从中提取特征数据并进行属性选择;其次,分别建立ELM和核极限学习机(KELM)下的重点食品安全风险预警模型,对分类特征数据进行分析,进而得出预警结果;最后,与采用back propagation (BP)神经网络,支持向量机(svm)所预警得出的结果进行对比,实验结果表明基于核极限学习机的食品安全风险预警模型在准确度与训练时间上都优于其他预警模型,对食品安全能够进行更有效预测,提升了食品安全质量监管的工作效率. 展开更多
关键词 食品安全 极限学习机 核极限学习机 预测 预警模型
在线阅读 下载PDF
基于IPSO-RELM转炉冶炼终点锰含量预测模型
17
作者 张壮 曹玲玲 +3 位作者 林文辉 孙建坤 冯小明 刘青 《工程科学学报》 CSCD 北大核心 2019年第8期1052-1060,共9页
分析了影响转炉冶炼终点钢水中锰含量的因素,针对基于BP神经网络算法的转炉冶炼终点锰含量预测模型存在的收敛速度慢,预测精度低等问题,提出了一种基于极限学习机(ELM)算法建模的新思路,并引入正则化以及改进粒子群优化算法(IPSO),建立... 分析了影响转炉冶炼终点钢水中锰含量的因素,针对基于BP神经网络算法的转炉冶炼终点锰含量预测模型存在的收敛速度慢,预测精度低等问题,提出了一种基于极限学习机(ELM)算法建模的新思路,并引入正则化以及改进粒子群优化算法(IPSO),建立了基于改进粒子群算法优化的正则化极限学习机(IPSO-RELM)的转炉终点锰含量预测模型;应用国内某炼钢厂转炉实际生产数据对模型进行训练和验证,并与基于BP、ELM和RELM算法的三类模型进行比较.结果表明,采用IPSO-RELM方法构建的模型,锰含量预测误差在±0.025%范围内的命中率达到94%,均方误差为2.18×10^-8,拟合优度R2为0.72,上述三项指标均显著优于其他三类模型,此外,该模型还具有良好的泛化能力,对于转炉实际冶炼过程具有一定的指导意义. 展开更多
关键词 转炉 终点锰含量 改进粒子群算法 极限学习机 正则化极限学习机 预测模型
基于迁移学习的风力发电机叶片裂缝识别 预览
18
作者 刘艳霞 丁小燕 方建军 《传感器与微系统》 CSCD 2019年第8期107-110,共4页
采用基于Inception v3模型的迁移学习方法对风机叶片裂缝进行自动检测,分别设计了基于反向传播(BP)神经网络和超限学习机(ELM)的全连接层实现叶片状态分类。实验结果表明:迁移学习方法的收敛速度和网络精度均优于Faster R-CNN和Yolo v3... 采用基于Inception v3模型的迁移学习方法对风机叶片裂缝进行自动检测,分别设计了基于反向传播(BP)神经网络和超限学习机(ELM)的全连接层实现叶片状态分类。实验结果表明:迁移学习方法的收敛速度和网络精度均优于Faster R-CNN和Yolo v3深度学习算法。对于结构相对简单的全连接层,用ELM超限学习机可取得与BP神经网络相近的性能指标(准确率89. 3%,召回率91. 5%,F1值0. 819),但训练速度可提高上千倍,适用于对实时性要求较高的应用场景。 展开更多
关键词 迁移学习 超限学习机 神经网络 深度学习 风机叶片
在线阅读 下载PDF
融合萤火虫方法的多标签懒惰学习算法 预览
19
作者 程玉胜 钱坤 +1 位作者 王一宾 赵大卫 《计算机应用》 CSCD 北大核心 2019年第5期1305-1311,共7页
已有的多标签懒惰学习算法(IMLLA)在利用近邻标签时因仅考虑了近邻标签相关性信息,而忽略相似度的影响,这可能会使算法的鲁棒性有所降低。针对这个问题,引入萤火虫方法,将相似度信息与标签信息相结合,提出一种融合萤火虫方法的多标签懒... 已有的多标签懒惰学习算法(IMLLA)在利用近邻标签时因仅考虑了近邻标签相关性信息,而忽略相似度的影响,这可能会使算法的鲁棒性有所降低。针对这个问题,引入萤火虫方法,将相似度信息与标签信息相结合,提出一种融合萤火虫方法的多标签懒惰学习算法(FF-MLLA)。首先,利用Minkowski距离来度量样本间相似度,从而找到近邻点;然后,结合标签近邻点和萤火虫方法对标签计数向量进行改进;最后,使用奇异值分解(SVD)与核极限学习机(ELM)进行线性分类。该算法同时考虑了标签信息与相似度信息从而提高了鲁棒性。实验结果表明,所提算法较其他的多标签学习算法有一定优势,并使用统计假设检验与稳定性分析进一步说明所提出算法的合理性与有效性。 展开更多
关键词 多标签学习 萤火虫方法 标签相关性 多标签懒惰学习算法 极限学习机
在线阅读 下载PDF
光纤安防系统中振动信号的特征提取和识别 预览
20
作者 邹柏贤 许少武 +1 位作者 苗军 逯燕玲 《计算机研究与发展》 EI CSCD 北大核心 2019年第9期1859-1871,共13页
利用光纤振动传感器可以实现分布式周界安防监测,进而实现自动报警.对周界安防监测信号的分析处理和识别受到业界关注.对光纤信号的特征提取和识别方法进行综述,这些特征提取方法通过对光纤振动信号的时域这个维度进行各种分解,从而提... 利用光纤振动传感器可以实现分布式周界安防监测,进而实现自动报警.对周界安防监测信号的分析处理和识别受到业界关注.对光纤信号的特征提取和识别方法进行综述,这些特征提取方法通过对光纤振动信号的时域这个维度进行各种分解,从而提取各种信号的属性特征;对光纤振动信号的识别主要使用经验阈值、神经网络、支持向量机方法,目前这些方法对光纤入侵事件识别效果还不能令人满意.通过实验采集挖掘机挖掘、人工挖掘、汽车行驶、行人和自然环境噪声这5种入侵行为引起的光纤振动信号数据,并进行数据的3维图形可视化分析,提出一种安防监测信号在时域和空域这2个维度信息的特征提取方法;根据光纤振动入侵事件的重要程度分成4个阶段先后完成识别任务,采用2分类任务决策树模型和约束极速学习机算法识别入侵事件类型,提高了对各类事件的正确识别率. 展开更多
关键词 入侵事件 实验样本 基于类间样本差向量的约束极速学习机 基于混合向量的约束极速学习机 识别率
在线阅读 下载PDF
上一页 1 2 79 下一页 到第
使用帮助 返回顶部 意见反馈