期刊文献+
共找到519篇文章
< 1 2 26 >
每页显示 20 50 100
基于Faster R-CNN和增量学习的车辆目标检测 预览
1
作者 张子颖 王敏 《计算机系统应用》 2020年第2期181-186,共6页
随着深度学习的研究热潮,近年来对车辆目标的检测逐步从机器学习方法转变为深度学习方法.目前,大多数深度学习方法对车辆目标的检测都存在不同程度的错检漏检问题.针对车辆目标检测中存在的小目标的错检漏检、截断式待检目标的漏检和重... 随着深度学习的研究热潮,近年来对车辆目标的检测逐步从机器学习方法转变为深度学习方法.目前,大多数深度学习方法对车辆目标的检测都存在不同程度的错检漏检问题.针对车辆目标检测中存在的小目标的错检漏检、截断式待检目标的漏检和重叠遮挡待检目标的漏检等问题,提出一种基于增量学习数据集的车辆目标检测方法,该方法与Faster R-CNN算法结合对车辆目标实现检测和分类.在实验的最后,分别从主观判断和客观检测数据两个方面,对比了车辆目标检测中未使用增量学习方法和使用增量学习方法对实验结果的影响.实验证明,使用基于增量学习和Faster R-CNN的车辆目标检测方法在主观判断方面对错检漏检的目标有明显地改善效果,从客观数据分析,使用该方法与未使用增量学习方法相比,VGG16网络mAP值提升了4%,ResNet101网络mAP值提升了6%. 展开更多
关键词 深度学习 机器学习 增量学习 FASTER R-CNN算法 目标检测
在线阅读 下载PDF
基于异构分类器集成的增量学习算法 预览
2
作者 熊霖 唐万梅 《计算机工程与应用》 CSCD 北大核心 2020年第7期155-161,共7页
将集成学习的思想引入到增量学习之中可以显著提升学习效果,近年关于集成式增量学习的研究大多采用加权投票的方式将多个同质分类器进行结合,并没有很好地解决增量学习中的稳定-可塑性难题。针对此提出了一种异构分类器集成增量学习算... 将集成学习的思想引入到增量学习之中可以显著提升学习效果,近年关于集成式增量学习的研究大多采用加权投票的方式将多个同质分类器进行结合,并没有很好地解决增量学习中的稳定-可塑性难题。针对此提出了一种异构分类器集成增量学习算法。该算法在训练过程中,为使模型更具稳定性,用新数据训练多个基分类器加入到异构的集成模型之中,同时采用局部敏感哈希表保存数据梗概以备待测样本近邻的查找;为了适应不断变化的数据,还会用新获得的数据更新集成模型中基分类器的投票权重;对待测样本进行类别预测时,以局部敏感哈希表中与待测样本相似的数据作为桥梁,计算基分类器针对该待测样本的动态权重,结合多个基分类器的投票权重和动态权重判定待测样本所属类别。通过对比实验,证明了该增量算法有比较高的稳定性和泛化能力。 展开更多
关键词 增量学习 集成学习 局部敏感哈希 异构分类器集成 动态权重
在线阅读 下载PDF
双分支迭代的深度增量图像分类方法 预览
3
作者 何丽 韩克平 +1 位作者 朱泓西 刘颖 《模式识别与人工智能》 CSCD 北大核心 2020年第2期150-159,共10页
针对深度增量学习可能产生灾难性遗忘的问题,提出双分支迭代的深度增量图像分类方法,使用主网络存储旧类知识,分支网络学习增量数据中的新类知识,并在增量过程中使用主网络的权重优化分支网络的参数.使用基于密度峰值聚类的方法从迭代... 针对深度增量学习可能产生灾难性遗忘的问题,提出双分支迭代的深度增量图像分类方法,使用主网络存储旧类知识,分支网络学习增量数据中的新类知识,并在增量过程中使用主网络的权重优化分支网络的参数.使用基于密度峰值聚类的方法从迭代数据集中筛选典型样本并构建保留集,并加入增量迭代训练中,减轻灾难性遗忘.实验表明,文中方法的性能较优. 展开更多
关键词 双分支卷积神经网络 保留集 增量学习 深度学习 图像分类
在线阅读 下载PDF
基于模型预测控制及智能寻优的水泥粉磨优化控制 预览
4
作者 张成伟 李宏伟 +4 位作者 李安平 张焱 刘小蒙 李慧霞 王磊 《水泥工程》 CAS 2020年第1期71-74,共4页
本文提出一种基于运行状态软测量和成本软约束的多变量模型预测控制(MPC)。MPC控制与传统的专家经验控制和模糊控制相比,通过模型对系统工艺参数的预测,不断地学习更新模型,更符合水泥粉磨大时延、多工况的特性。应用中通过对水泥粉磨... 本文提出一种基于运行状态软测量和成本软约束的多变量模型预测控制(MPC)。MPC控制与传统的专家经验控制和模糊控制相比,通过模型对系统工艺参数的预测,不断地学习更新模型,更符合水泥粉磨大时延、多工况的特性。应用中通过对水泥粉磨装置的阶跃响应实验,建立多变量预测控制模型,解决水泥粉磨系统生产过程的不确定性。在此基础上,通过增量学习和机器学习找到最优运行参数,使水泥粉磨的MPC控制一直保持在最优工况。 展开更多
关键词 MPC 软测量 增量学习 机器学习
在线阅读 下载PDF
属性值和属性变化的增量属性约简算法
5
作者 景运革 景罗希 +1 位作者 王宝丽 程妮 《山东大学学报:理学版》 CAS CSCD 北大核心 2020年第1期62-68,共7页
针对决策信息系统属性增加且属性值发生细化的情况下如何快速更新属性约简的问题,探讨了基于矩阵方法计算决策信息系统相对知识粒度的增量更新机理,设计了属性增加且属性值发生细化的矩阵增量约简算法。当决策表中的属性值细化且决策表... 针对决策信息系统属性增加且属性值发生细化的情况下如何快速更新属性约简的问题,探讨了基于矩阵方法计算决策信息系统相对知识粒度的增量更新机理,设计了属性增加且属性值发生细化的矩阵增量约简算法。当决策表中的属性值细化且决策表中属性增加时,所提出的增量约简算法与非增量约简算法及其他增量约简算法相比,约简的分类精度变化不大,但是能够大大缩短计算约简的运行时间。最后利用一些UCI数据集做了大量仿真实验,仿真结果验证了所给出的动态属性约简算法能够有效地解决动态数据约简的问题。 展开更多
关键词 粗糙集 增量学习 属性约简 知识粒度
房地产动态估价系统的设计与研究 预览
6
作者 潘巍 晋松 《无线互联科技》 2020年第4期62-63,共2页
文章对房地产估价方法进行分析,研究房地产价格时变性的估价系统,并提出一种新型的房地产动态估价系统的设计方案,在方案中将分布式爬虫技术和基于回归的增量学习方法相结合,为构建房地产动态估价系统奠定了良好的基础。
关键词 房地产估价 动态估价 分布式爬虫 增量学习
在线阅读 下载PDF
基于增量学习的RocksDB键值系统主动缓存机制 预览
7
作者 骆克云 叶保留 +2 位作者 唐斌 梅峰 卢文达 《计算机应用》 CSCD 北大核心 2020年第2期321-327,共7页
由于分层结构的约束,基于日志结构合并(LSM)树的RocksDB键值存储系统面临着读取性能低下的问题。一种有效的解决方法是对热点数据进行主动缓存,但其面临两个挑战:一是如何在数据分布持续动态变化时对热点数据进行预测,二是如何将主动缓... 由于分层结构的约束,基于日志结构合并(LSM)树的RocksDB键值存储系统面临着读取性能低下的问题。一种有效的解决方法是对热点数据进行主动缓存,但其面临两个挑战:一是如何在数据分布持续动态变化时对热点数据进行预测,二是如何将主动缓存机制与RocksDB存储结构衔接起来。针对这些挑战,基于预测分析技术,构建了由数据采集、系统交互、系统测试等部分组成的面向RocksDB键值系统的主动缓存框架,能够将热点数据缓存在LSM树的较低层级中;并对数据访问模式进行建模,设计并实现了基于增量学习的热点数据预测分析方法,能够有效减少存储介质的I/O访问次数。实验结果表明该机制能有效提升RocksDB在不同动态工作负载下的数据读取性能。 展开更多
关键词 RocksDB 主动缓存 增量学习 日志结构合并树
在线阅读 下载PDF
基于矩阵策略的不完备混合型数据增量式特征选择算法 预览
8
作者 沈玉峰 林徐 《西昌学院学报:自然科学版》 2020年第1期71-78,123,共9页
特征选择是粗糙集理论在数据挖掘等领域中一种重要的应用,如何对动态变化的信息系统进行增量式特征选择是目前粗糙集理论研究的重点。在不完备混合型信息系统中,属性集的不断增加是信息系统动态变化的一种重要形式。首先在不完备混合型... 特征选择是粗糙集理论在数据挖掘等领域中一种重要的应用,如何对动态变化的信息系统进行增量式特征选择是目前粗糙集理论研究的重点。在不完备混合型信息系统中,属性集的不断增加是信息系统动态变化的一种重要形式。首先在不完备混合型信息系统中引入邻域条件熵的概念,并且利用矩阵的方法去表示邻域条件熵;然后针对属性集动态增加的情形,提出矩阵形式的邻域条件熵增量式更新,并且基于这种增量式更新机制给出了相应的增量式特征选择算法;最后,UCI数据集的实验结果表明,所提出的增量式特征选择算法比非增量式特征选择算法具有更高的特征选择性能。 展开更多
关键词 粗糙集 特征选择 不完备混合型信息系统 矩阵 邻域条件熵 增量式学习
在线阅读 免费下载
概念漂移数据流集成分类算法综述 预览
9
作者 杜诗语 韩萌 +2 位作者 申明尧 张春砚 孙蕊 《计算机工程》 CAS CSCD 北大核心 2020年第1期15-24,30共11页
针对概念漂移数据流集成分类算法的基本概念、相关工作、适用范围及优缺点等方面进行具体阐述,重点分析突变型、渐变型、重复型和增量型集成分类算法,以及集成分类中的Bagging、Boosting、基分类器组合学习策略与在线学习、基于块的集... 针对概念漂移数据流集成分类算法的基本概念、相关工作、适用范围及优缺点等方面进行具体阐述,重点分析突变型、渐变型、重复型和增量型集成分类算法,以及集成分类中的Bagging、Boosting、基分类器组合学习策略与在线学习、基于块的集成、增量学习关键技术,指出现阶段概念漂移数据流集成分类算法所需解决的主要问题,并对集成基分类器的动态更新与加权组合、多类型概念漂移的快速检测等研究方向进行分析和展望。 展开更多
关键词 动态数据流 集成 分类 概念漂移 增量学习
在线阅读 下载PDF
混合信息系统的动态变精度粗糙集模型
10
作者 杨臻 邱保志 《控制与决策》 EI CSCD 北大核心 2020年第2期297-308,共12页
粗糙集是一种针对不确定性数据的数据挖掘理论,邻域粗糙集是处理混合型数据的常用模型.为了提高对混合型数据的抗噪能力,提出一种混合信息系统的变精度粗糙集模型;由于现实环境下信息系统的动态性,进一步提出对象增加和减少时的动态变... 粗糙集是一种针对不确定性数据的数据挖掘理论,邻域粗糙集是处理混合型数据的常用模型.为了提高对混合型数据的抗噪能力,提出一种混合信息系统的变精度粗糙集模型;由于现实环境下信息系统的动态性,进一步提出对象增加和减少时的动态变精度粗糙集模型.首先研究混合信息系统中条件概率随对象增加和减少时的变化关系,然后在该变化关系的基础上提出混合信息系统变精度粗糙集上下近似的增量式更新机制,最后根据这一更新机制提出相应的增量式近似更新算法.实验结果表明,所提出的增量式更新算法比非增量的算法具有更高的计算效率,从而验证了所提出模型的有效性,同时也表明所提出模型更加适用于复杂的数据环境. 展开更多
关键词 信息系统 混合属性 变精度粗糙集 对象变化 动态更新 增量式学习
增量式概念漂移收敛问题的进一步研究 预览
11
作者 吴越 《信息与电脑》 2020年第1期151-153,共3页
概念飘移是数据流挖掘的一个研究热点与难点,目前概念飘移尚未有统一定义,如何判断认知收敛更是研究盲区。粗糙集在处理不确定性问题上具有较大优势,逐渐被应用于概念飘移探测。但现有的探测方法在适应性上存在一定的问题,缺少增量式概... 概念飘移是数据流挖掘的一个研究热点与难点,目前概念飘移尚未有统一定义,如何判断认知收敛更是研究盲区。粗糙集在处理不确定性问题上具有较大优势,逐渐被应用于概念飘移探测。但现有的探测方法在适应性上存在一定的问题,缺少增量式概念飘移的相关研究。针对上述问题,笔者从单条决策规则和整体决策系统的角度出发,引入决策优势函数与飘移度,对概念飘移的适应与收敛问题做了进一步研究;在此基础上,提出一种基于决策支持度阈值的增量式规则更新算法,使用局部最小决策支持度作为阈值来处理新规则样本,并构造缓冲区用于存储矛盾规则和小于支持度阈值的规则,从而保证新样本的高效利用和数据的完整性。理论分析与仿真实验结果表明,笔者提出的算法和研究策略有效可行。 展开更多
关键词 概念飘移 粗糙集 增量式学习 规则获取
在线阅读 下载PDF
基于增量学习的SVM-KNN网络入侵检测方法 预览
12
作者 付子爔 徐洋 +2 位作者 吴招娣 许丹丹 谢晓尧 《计算机工程》 CAS CSCD 北大核心 2020年第4期115-122,共8页
为满足入侵检测的实时性和准确性要求,通过结合支持向量机(SVM)和K最近邻(KNN)算法设计IL-SVM-KNN分类器,并采用平衡k维树作为数据结构提升执行速度.训练阶段应用增量学习思想并考虑知识库的扩展,分类阶段则利用SVM和KNN算法将待分类数... 为满足入侵检测的实时性和准确性要求,通过结合支持向量机(SVM)和K最近邻(KNN)算法设计IL-SVM-KNN分类器,并采用平衡k维树作为数据结构提升执行速度.训练阶段应用增量学习思想并考虑知识库的扩展,分类阶段则利用SVM和KNN算法将待分类数据分成3种情况应用不同的分类策略.基于KDD CUP99和NSL-KDD数据集进行实验,结果表明,IL-SVM-KNN能够区分正常流量和异常流量并准确判断异常流量的攻击类型,其准确率较KNN算法和SVM算法有明显提升,判断攻击类型的准确性高于决策树、随机森林和XGBoost算法,并且较两层卷积神经网络消耗时间更少,资源消耗更低. 展开更多
关键词 支持向量机 K最近邻算法 k维树 入侵检测 增量学习 卷积神经网络
在线阅读 下载PDF
基于改进CART算法的降雨量预测模型 预览
13
作者 李正方 杜景林 周芸 《现代电子技术》 北大核心 2020年第2期133-137,141共6页
降雨量预测对于水资源的管理非常重要,可以帮助决策者提前做出应对举措,降低灾情发生时带来的经济损失和人员伤亡。同时,降雨量预测对人们的日常生活、出行等也有着非常重要参考意义。通过分类回归树算法构建两个预测降雨量的模型,然后... 降雨量预测对于水资源的管理非常重要,可以帮助决策者提前做出应对举措,降低灾情发生时带来的经济损失和人员伤亡。同时,降雨量预测对人们的日常生活、出行等也有着非常重要参考意义。通过分类回归树算法构建两个预测降雨量的模型,然后通过粒子群算法对模型中的参数进行优化。此外,为解决原算法不具备处理数据流问题的能力,根据dsCART算法的思想,对原算法生成决策树的过程做出了调整,使其具有增量学习的能力,提高其在气象信息系统中的实用性。最终通过实验验证了该改进方法的可行性、有效性。 展开更多
关键词 降雨量预测 CART算法 粒子群优化算法 增量学习 性能评价 实验验证
在线阅读 下载PDF
动态模糊粗糙特征选取算法 预览
14
作者 倪鹏 刘阳明 +2 位作者 赵素云 陈红 李翠平 《计算机科学与探索》 CSCD 北大核心 2020年第2期236-243,共8页
由于数据随时间和空间不断更新,很多基于粗糙集的增量方法被提出。然而,动态数据上基于模糊粗糙集的特征选取(也称属性约简)更新的研究较少,特别是连续型动态数据上的增量特征选取。为了解决这个问题,提出适用于连续型数据的基于模糊粗... 由于数据随时间和空间不断更新,很多基于粗糙集的增量方法被提出。然而,动态数据上基于模糊粗糙集的特征选取(也称属性约简)更新的研究较少,特别是连续型动态数据上的增量特征选取。为了解决这个问题,提出适用于连续型数据的基于模糊粗糙集的增量属性约简算法。首先提出模糊粗糙基本概念的增量机制,如模糊正域的增量机制。只有部分示例在已有属性约简上的辨识能力不足,即对于模糊正域来说,存在一个关键示例集。增量约简算法基于已有数据上的约简结果,仅需要更新关键示例集中的示例,而非全部的论域。因而该增量算法在动态数据上能快速获得约简的更新。通过数值对比实验可以看出,增量算法比非增量算法在运行时间上有明显的优势。特别是对于高维数据集,增量算法可以大大地节省计算时间。 展开更多
关键词 特征选择 增量学习 模糊粗糙集 依赖度
在线阅读 下载PDF
特征增量极限学习机 预览
15
作者 赵中堂 郑小东 《计算机科学》 CSCD 北大核心 2019年第S11期112-116,共5页
在机器学习的不同应用领域,出现了很多优秀的极限学习机分类模型。研究者往往愿意公开这些模型的结构以及参数,但不愿公开原始训练数据。针对如何仅利用现有的模型和少量具有新特征的样本得到一个更高效的识别模型的问题,提出一种特征... 在机器学习的不同应用领域,出现了很多优秀的极限学习机分类模型。研究者往往愿意公开这些模型的结构以及参数,但不愿公开原始训练数据。针对如何仅利用现有的模型和少量具有新特征的样本得到一个更高效的识别模型的问题,提出一种特征增量极限学习机算法。该算法能从具有新特征的样本中学习知识,提高现有模型的识别精度。在真实世界图像和三轴加速度传感器数据集上的测试结果表明,该算法能有效地工作,在不需要以往训练样本参与的情况下,能一定程度上提高已有模型的识别精度,得到新的识别模型。 展开更多
关键词 增量学习 普适计算 迁移学习 机器学习
在线阅读 免费下载
基于实例迁移的数据流分类挖掘方法
16
作者 刘三民 刘余霞 《信息与控制》 CSCD 北大核心 2019年第3期380-384,共5页
为解决数据流分类过程中样本标注和概念漂移问题,提出了一种基于实例迁移的数据流分类挖掘模型.首先,该模型用支持向量机作学习器,用所得分类模型中的支持向量构建源领域,待分类的当前数据块为目标域.然后,借助互近邻思想在源域中挑选... 为解决数据流分类过程中样本标注和概念漂移问题,提出了一种基于实例迁移的数据流分类挖掘模型.首先,该模型用支持向量机作学习器,用所得分类模型中的支持向量构建源领域,待分类的当前数据块为目标域.然后,借助互近邻思想在源域中挑选目标域中样本的真邻居进行实例迁移,避免发生负迁移.最后,通过合并目标域和迁移样本形成训练集,提高标注样本数量,增强模型的泛化能力.理论分析和实验结果表明,所提方法具有可行性,相比其它学习方法在分类准确性方面更具优势. 展开更多
关键词 互近邻 迁移学习 数据流分类 增量学习
基于增量学习的合成孔径雷达目标识别算法 预览 被引量:1
17
作者 郭晨龙 仇振安 孙瑞彬 《电光与控制》 CSCD 北大核心 2019年第1期31-33,103共4页
传统的合成孔径雷达(SAR)目标识别往往采用批量学习的方法,但是在现实应用中,系统的训练数据并不能一次性全部获得,当有新的训练样本到来时,采用批量学习方法需要重新训练整个系统。为解决这个问题,将增量学习算法--正则在线序贯式极限... 传统的合成孔径雷达(SAR)目标识别往往采用批量学习的方法,但是在现实应用中,系统的训练数据并不能一次性全部获得,当有新的训练样本到来时,采用批量学习方法需要重新训练整个系统。为解决这个问题,将增量学习算法--正则在线序贯式极限学习机(ROSELM)应用到SAR目标识别中,并且采用粒子群算法优化ROSELM的初始权值以提高其稳定性和识别率。实验结果表明,该算法在新的SAR目标样本获得时只需要通过更新输出权值即可完成系统的更新,无需重新训练,且速度极快、识别率高,可以作为SAR目标识别系统在线更新的良好选择。 展开更多
关键词 合成孔径雷达 目标识别 极限学习机 增量学习
在线阅读 下载PDF
基于深度学习的地震岩相反演方法 预览 被引量:2
18
作者 刘力辉 陆蓉 杨文魁 《石油物探》 EI CSCD 北大核心 2019年第1期123-129,共7页
复杂岩性预测是地震储层预测的难题,基于机器学习的非线性反演是识别岩性的有效手段。常规方法多以测井特征曲线(伽马曲线等)为学习目标,利用BP神经网络建立非线性映射预测岩性体,但这种方法存在两个问题,一是井震分辨率不匹配,二是BP... 复杂岩性预测是地震储层预测的难题,基于机器学习的非线性反演是识别岩性的有效手段。常规方法多以测井特征曲线(伽马曲线等)为学习目标,利用BP神经网络建立非线性映射预测岩性体,但这种方法存在两个问题,一是井震分辨率不匹配,二是BP神经网络在反演过程中存在局部收敛、效果不稳定以及非线性表征能力弱的问题。为解决这些问题,一是通过引入地震岩相概念解决井震分辨率不匹配问题,二是将深度学习引入到地震岩相反演中,经过优化样本采样、抽取相控伪井解决大样本集的构建问题,采用增量学习的策略进一步提高预测模型的精度和稳定性。以分频地震数据作为预测模型的输入,井岩相曲线为反演目标,实现了基于深度学习的地震岩相反演,有效解决了复杂岩性预测的难题。将该方法应用于海上某深水陆坡水道沉积研究区(该区发育灰岩、钙质砂岩、砂岩和泥岩4种岩相,岩石物理规律复杂,区分困难)岩性预测,结果表明,基于深度学习的地震岩相反演结果与井资料吻合,与地质认识相符。与叠前反演方法和BP神经网络学习岩相反演方法相比,基于深度学习的地震岩相反演方法准确度和分辨率更高,证明该方法是复杂岩性预测的有效手段。 展开更多
关键词 深度学习 增量学习 相控伪井 优化样本采样 分频 地震岩相 复杂岩性预测
在线阅读 下载PDF
小样本深度学习方法实现LED TV屏缺陷检测 预览
19
作者 周永福 曾志 罗中良 《计算机测量与控制》 2019年第11期11-15,共5页
为实现当前工业4.0时代电子类企业智能制造的全过程,引入机器视觉完成产品的缺陷检测,用于解决缺陷问题多样性导致算法能力不足的问题;首先对已标注小样本数据集通过深度学习得到初始特征模型,接着针对该特征模型施以迁移学习方法用以实... 为实现当前工业4.0时代电子类企业智能制造的全过程,引入机器视觉完成产品的缺陷检测,用于解决缺陷问题多样性导致算法能力不足的问题;首先对已标注小样本数据集通过深度学习得到初始特征模型,接着针对该特征模型施以迁移学习方法用以实现LED TV的检测,并将已检测样本进一步用于增量学习完成模型参数的修正,最后采用全连接神经网络FCNet(Fully Connected Neural Network)完成分类,探讨了一种运用机器视觉实现LED TV的光学屏检技术;并给出了检测样品作为补充的样本数据集增量学习模型;实践表明,所提出的方法能进一步提升工业机器人智能制造阶段自动化检测的准确率,最终实现工业生产的柔性和智能化水平,并为机器视觉的应用提供示范。 展开更多
关键词 机器视觉 迁移学习 增量学习 FCNet LED TV 缺陷检测
在线阅读 下载PDF
基于资源分配网络的小数据集并行集成学习方法 预览
20
作者 张安国 张树勋 +2 位作者 朱巍 李秀敏 黄金龙 《计算机应用研究》 CSCD 北大核心 2019年第4期997-1000,共4页
为了在小规模的训练数据集上获得一个具有稳定的高计算精度的算法模型,提出了一种基于扩展卡尔曼滤波器的资源分配网络并行集成学习方法。该集成系统由多个带有扩展卡尔曼滤波器的资源分配网络(RANEKF)组成,并且每个RANEKF子网的输入由... 为了在小规模的训练数据集上获得一个具有稳定的高计算精度的算法模型,提出了一种基于扩展卡尔曼滤波器的资源分配网络并行集成学习方法。该集成系统由多个带有扩展卡尔曼滤波器的资源分配网络(RANEKF)组成,并且每个RANEKF子网的输入由原始数据集中的输入经过随机权值的修正得到。通过和其他神经网络构成的集成学习算法的实验对比,发现提出的方法在小训练集上拥有更高的计算精度和稳定性。 展开更多
关键词 资源分配网络 并行集成学习 增量学习 扩展卡尔曼滤波器
在线阅读 下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部 意见反馈