期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于注意力机制的包装命名实体识别 预览
1
作者 冀相冰 朱艳辉 +2 位作者 徐啸 梁文桐 詹飞 《包装工程》 CAS 北大核心 2019年第15期24-29,共6页
目的为了解决包装行业相关文本命名实体识别困难问题,提出在BiLSTM(Bidirectional Long Short-Term Memory)神经网络中加入注意力机制(Attention)和字词联合特征,构建一种基于注意力机制的BiLSTM深度学习模型(简称Attention-BiLSTM),以... 目的为了解决包装行业相关文本命名实体识别困难问题,提出在BiLSTM(Bidirectional Long Short-Term Memory)神经网络中加入注意力机制(Attention)和字词联合特征,构建一种基于注意力机制的BiLSTM深度学习模型(简称Attention-BiLSTM),以识别包装命名实体。方法首先构建包装领域词典匹配包装语料中词语的类别特征,同时将包装语料转换为字特征和词特征联合的向量特征,并且在过程中加入POS(词性)信息。然后将以上特征联合馈送到BiLSTM网络,以获取文本的全局特征,并利用注意力机制获取局部特征。最后根据文本的全局特征和局部特征使用CRF(Conditional Random Field)解码整个句子的最优标注序列。结果通过对《中国包装网》新闻数据集的实验,获得了85.6%的F值。结论所提方法在包装命名实体识别中优于传统方法。 展开更多
关键词 命名实体识别 包装 注意力机制 BiLSTM 字词联合特征
在线阅读 免费下载
上一页 1 下一页 到第
使用帮助 返回顶部 意见反馈
新型冠状病毒肺炎防控与诊疗专栏