期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于深度学习的无人机遥感影像船只检测方法 预览
1
作者 罗巍 陈曙东 +1 位作者 龚立晨 李伟炜 《船舶物资与市场》 2019年第4期25-28,共4页
传统的目标检测方法针对海量无人机遥感影像检测精度不高,解译时效性差。本文提出一种基于深度学习的无人机遥感影像船只检测方法。首先,通过数据扩增、TTA多图检测和数据标注等手段对原始无人机影像数据进行预处理;然后,结合海量的卫... 传统的目标检测方法针对海量无人机遥感影像检测精度不高,解译时效性差。本文提出一种基于深度学习的无人机遥感影像船只检测方法。首先,通过数据扩增、TTA多图检测和数据标注等手段对原始无人机影像数据进行预处理;然后,结合海量的卫星影像船舶数据对网络进行预训练;最后,依托PyTorch深度学习框架,综合运用U-Net+MASK R-CNN模型融合策略及TTA多模型融合策略对模型进行训练。结果为了验证本文方法的先进性,将未融合U-Net语义分割结果生成的训练模型检测结果及面向对象方法通过构建规则集匹配模板得到的检测结果与本文方法一道进行精度评价。本文方法的检出率、漏检率和误检率分别为88.39%、11.61%和10.53%,优于其他算法。 展开更多
关键词 模型融合 检出率 误检率 漏检率 卷积神经网络 无人机遥感影像 深度学习
在线阅读 下载PDF
利用角度纹理特征提取高分辨率遥感影像中城市主干道路 被引量:1
2
作者 罗巍 王东亮 《中国图象图形学报》 CSCD 北大核心 2017年第11期1584-1591,共8页
目的 路网密度是一个地区交通可达性的重要指标,获取影像中的道路像元是计算路网密度的首要环节。本文利用高分遥感影像中城市主干道路光谱特征沿道路方向趋向一致的特性,提取城市主干道路。方法 通过分析像元点的角度纹理图,根据最... 目的 路网密度是一个地区交通可达性的重要指标,获取影像中的道路像元是计算路网密度的首要环节。本文利用高分遥感影像中城市主干道路光谱特征沿道路方向趋向一致的特性,提取城市主干道路。方法 通过分析像元点的角度纹理图,根据最小灰度方差所在方向设计2维Gabor滤波器。用滤波值数组作为每个像元的表征,借助k均值聚类分割策略将道路像元提取出来,并细化为主干道路网。结果 以完全率、正确率和提取质量作为精度评价指标,以k均值聚类作为分割策略,当分割对象分别为灰度值、灰度共生矩阵、多通道2维Gabor滤波值及本文采用的特征向量时,评价结果分别为0.45、0.51、0.37,0.62、0.70、0.54,0.58、0.66、0.52及0.72、0.78、0.65;以Hough变换法作为提取策略时,评价结果分别为0.41、0.56和0.34;以多尺度分割法作为提取策略时,评价结果分别为0.41、0.56和0.34。由此可知,采用相同分割策略,本文采用的分割对象相较其他对象可以获得更好的分类精度。相较传统的基于线状或面状特征的分类手段,本文方法在精度方面亦具有一定的优势。结论 本文提出了一种全新的道路像元提取方法,通过构造特定方向的2维Gabor滤波值数组进行影像分割。实验表明该方法具有较好的抗噪性和普适性,广泛适用于GF-1、GF-2、IKONS、QuickBird及其他传感器获取的高分辨率遥感影像。 展开更多
关键词 道路提取 角度纹理特征 2维Gabor滤波器 特征向量 K均值聚类
上一页 1 下一页 到第
使用帮助 返回顶部 意见反馈