期刊文献+
共找到2,313篇文章
< 1 2 116 >
每页显示 20 50 100
无模型强化学习研究综述 认领
1
作者 秦智慧 李宁 +3 位作者 刘晓彤 刘秀磊 佟强 刘旭红 《计算机科学》 CSCD 北大核心 2021年第3期180-187,共8页
强化学习(Reinforcement Learning,RL)作为机器学习领域中与监督学习、无监督学习并列的第三种学习范式,通过与环境进行交互来学习,最终将累积收益最大化。常用的强化学习算法分为模型化强化学习(Model-based Reinforcement Lear-ning)... 强化学习(Reinforcement Learning,RL)作为机器学习领域中与监督学习、无监督学习并列的第三种学习范式,通过与环境进行交互来学习,最终将累积收益最大化。常用的强化学习算法分为模型化强化学习(Model-based Reinforcement Lear-ning)和无模型强化学习(Model-free Reinforcement Learning)。模型化强化学习需要根据真实环境的状态转移数据来预定义环境动态模型,随后在通过环境动态模型进行策略学习的过程中无须再与环境进行交互。在无模型强化学习中,智能体通过与环境进行实时交互来学习最优策略,该方法在实际任务中具有更好的通用性,因此应用范围更广。文中对无模型强化学习的最新研究进展与发展动态进行了综述。首先介绍了强化学习、模型化强化学习和无模型强化学习的基础理论;然后基于价值函数和策略函数归纳总结了无模型强化学习的经典算法及各自的优缺点;最后概述了无模型强化学习在游戏AI、化学材料设计、自然语言处理和机器人控制领域的最新研究现状,并对无模型强化学习的未来发展趋势进行了展望。 展开更多
关键词 人工智能 强化学习 深度强化学习 无模型强化学习 马尔可夫决策过程
在线阅读 免费下载
高分辨率遥感影像解译中的机器学习范式 认领
2
作者 周培诚 程塨 +1 位作者 姚西文 韩军伟 《遥感学报》 EI CSCD 北大核心 2021年第1期182-197,共16页
高分辨率遥感影像解译是遥感信息处理领域的研究热点之一,在遥感大数据知识挖掘与智能化分析中起着至关重要的作用,具有重要的民用和军事应用价值。传统的高分辨率遥感影像解译通常采用人工目视解译方式,费时费力且精度低。所以,如何自... 高分辨率遥感影像解译是遥感信息处理领域的研究热点之一,在遥感大数据知识挖掘与智能化分析中起着至关重要的作用,具有重要的民用和军事应用价值。传统的高分辨率遥感影像解译通常采用人工目视解译方式,费时费力且精度低。所以,如何自动、高效地实现高分辨率遥感影像解译是亟待解决的问题。近年来,随着人工智能技术的飞速发展,采用机器学习方法实现高分辨率遥感影像解译已成为主流的研究方向。本文结合高分辨率遥感影像解译的典型任务,如目标检测、场景分类、语义分割、高光谱图像分类等,系统综述了5种代表性的机器学习范式。具体来说,本文分别介绍了不同机器学习范式的定义、常用方法以及代表性应用,包括全监督学习(如支持向量机、K-最近邻、决策树、随机森林、概率图模型)、半监督学习(如纯半监督学习、直推学习、主动学习)、弱监督学习(如多示例学习)、无监督学习(如聚类、主成分分析、稀疏表达)和深度学习(如堆栈自编码机、深度信念网络、卷积神经网络、生成对抗网络)。其次,深入分析五种机器学习范式的优缺点,并总结了它们在遥感影像解译中的典型应用。最后,展望了高分辨率遥感影像解译的机器学习发展方向,如小样本学习、无监督深度学习、强化学习等。 展开更多
关键词 遥感影像解译 机器学习范式 深度学习 弱监督学习 小样本学习 强化学习
基于模糊强化学习的双轮机器人姿态平衡控制 认领
3
作者 闫安 陈章 +1 位作者 董朝阳 何康辉 《系统工程与电子技术》 EI CSCD 北大核心 2021年第4期1036-1043,共8页
针对单轨双轮机器人在静止情况下存在的固有静态不稳定问题,提出一种基于模糊强化学习(简称为Fuzzy-Q)的控制方法。首先,运用拉格朗日法建立带控制力矩陀螺的系统动力学模型。然后,在此基础上设计表格型强化学习算法,实现机器人的稳定... 针对单轨双轮机器人在静止情况下存在的固有静态不稳定问题,提出一种基于模糊强化学习(简称为Fuzzy-Q)的控制方法。首先,运用拉格朗日法建立带控制力矩陀螺的系统动力学模型。然后,在此基础上设计表格型强化学习算法,实现机器人的稳定平衡控制。最后,针对算法存在的控制精度不高和控制器输出离散等问题,采用模糊理论泛化动作空间,改善控制精度,并使控制输出连续。仿真实验表明,相较于传统强化学习方法,所提方法能够显著提高控制精度,且可以有效抑制外界干扰力矩对系统的影响,保证系统具有一定的抗干扰能力。 展开更多
关键词 强化学习 模糊强化学习 模糊算法 控制力矩陀螺 单轨双轮机器人
在线阅读 下载PDF
文章速递基于层次情节性元强化学习的对抗行为评估 认领
4
作者 聂凯 孟庆海 《指挥控制与仿真》 2021年第2期65-71,共7页
基于强化学习的敌方对抗行为评估能够提高仿真推演的智能化水平,强化学习算法的训练速度成为制约其实际军事应用的关键。为了加快强化学习速度,首先将敌方对抗行为评估建模为多任务强化学习,并将环境知识和经验集成到学习算法,提出基于... 基于强化学习的敌方对抗行为评估能够提高仿真推演的智能化水平,强化学习算法的训练速度成为制约其实际军事应用的关键。为了加快强化学习速度,首先将敌方对抗行为评估建模为多任务强化学习,并将环境知识和经验集成到学习算法,提出基于层次情节性元强化学习(Hierarchical Episodic Meta-Deep Reinforcement Learning,HE Meta DRL)的敌方对抗行为评估方法,协同加快强化学习速度。设计了层次情节性元强化学习智能体结构,给出了具体流程;采用可微分神经字典(Differentiable Neural Dictionary,DND)的情节记忆系统,解决参数增量的问题,并在长短时记忆神经网络里叠加设计好的情节记忆系统,恢复长短时记忆神经网络里的活动模式;最后选用OpenAI Gym平台和飞行器攻防对抗智能博弈平台对方法进行测试验证。结果表明,HE Meta DRL在倒立摆任务、情节性两步任务和敌方对抗行为评估任务上都表现出良好性能,实现了层次情节性DRL和元RL协同加速强化学习的目标。 展开更多
关键词 仿真推演 行为评估 强化学习 学习